Skip to main content
Log in

Enzymatic synthesis of poly-l-lactide and poly-l-lactide-co-glycolide in an ionic liquid

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The syntheses of poly-l-lactide (PLLA) and poly-l-lactide-co-glycolide (PLLGA) is reported in the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate [HMIM][PF6] mediated by the enzyme lipase B from Candida antarctica (Novozyme 435). The highest PLLA yield (63%) was attained at 90 °C with a molecular weight (M n ) of 37.8 × 103 g/mol determined by size exclusion chromatography. This procedure produced relatively high crystalline polymers (up to 85% PLLA) as determined by DSC. In experiments at 90 °C product synthesis also occurred without biocatalyst, however, PLLA synthesis in [HMIM][PF6] at 65 °C followed only the enzymatic mechanism as ring opening was not observed without the enzyme. In addition, the enzymatic synthesis of PLLGA is first reported here using Novozyme 435 biocatalyst with up to 19% of lactyl units in the resulting copolymer as determined by NMR. Materials were also characterized by TGA, MALDI-TOF–MS, X-ray diffraction, polarimetry and rheology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12:1841–1846

    Article  CAS  Google Scholar 

  2. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864

    Article  CAS  Google Scholar 

  3. Garlotta DJ (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84

    Article  CAS  Google Scholar 

  4. Dechy-Cabaret O, Martin-Vaca B, Bourissou D (2004) Controlled ring-opening polymerization of lactide and glycolide. Chem Rev 104:6147–6176

    Article  CAS  Google Scholar 

  5. Lassalle V, Barrera-Galand G, Luján-Ferreira M (2008) Lipase-catalyzed copolymerization of lactic acid and glycolic acid with potential as drug delivery devices. Bioprocess Biosyst Eng 31:499–508

    Article  CAS  Google Scholar 

  6. Distel KA, Zhu G, Wang P (2005) Biocatalysis using an organic-soluble enzyme for the preparation of poly(lactic acid) in organic solvents. Bioresour Technol 96:617–623

    Article  CAS  Google Scholar 

  7. Matsumura S, Mabuchi K, Toshima K (1997) Lipase-catalyzed polymerization of lactide. Macromol Rapid Comm 18:477–482

    Article  CAS  Google Scholar 

  8. Fujioka M, Hosoda N, Nishiyama S, Noguchi H, Shoji A, Kumar DS, Katsuraya K, Ishii S, Yoshida Y (2006) One-pot enzymatic synthesis of poly(L, L)-lactide by immobilized lipase catalyst. Sen-i Gakkaishi 62:63–65

    Article  CAS  Google Scholar 

  9. Gorke JT, Krzystof O, Louwagie A, Kazlauskas RJ, Srienc F (2007) Enzymatic synthesis of poly(hydroxyalkanoates) in ionic liquids. J Biotech 132:306–313

    Article  CAS  Google Scholar 

  10. Yoshizawa-Fujita M, Saito Ch, Takeoka Y, Rikukawa M (2008) Lipase catalyzed polymerization of L-lactide in ionic liquids. Polym Adv Technol 19:1396–1400

    Article  CAS  Google Scholar 

  11. Huijser S, Staal BBP, Huang J, Duchateau R, Koning CE (2006) Topology characterization by MALDIToF-MS of enzymatically synthesized poly(lactide-co-glycolide). Biomacromolecules 7:2465–2469

    Article  CAS  Google Scholar 

  12. Lau RM, van Rantwijk F, Seddon KR, Sheldon RA (2000) Lipase-catalyzed reactions in ionic liquids. Org Lett 2:4189–4191

    Article  CAS  Google Scholar 

  13. Kaar JL, Jesionowski AM, Berberich JA, Moulton A, Russell AJ (2003) Impact of ionic liquid physical properties on lipase activity and stability. J Am Chem Soc 125:4125–4131

    Article  CAS  Google Scholar 

  14. De Diego T, Lozano P, Gmouh S, Vaultier M, Iborra JL (2005) Understanding structure–stability relationships of Candida antartica lipase B in ionic liquids. Biomacromolecules 6:1457–1464

    Article  Google Scholar 

  15. Chen H, He Y, Zhu J, Alias H, Ding Y, Nancarrow P, Hardcre C, Rooney D, Tan C (2008) Rheological and heat transfer behaviour of the ionic liquid, [C4mim][NTf2]. Int J Heat Fluid Fl 29:149–155

    Article  Google Scholar 

  16. Belleney J, Wisniewski M, Le Borgne A (2004) Influence of the nature of the ligand on the microstructure of poly d, l-lactides prepared with organoaluminum initiators. Eur Polym J 40:523–530

    Article  CAS  Google Scholar 

  17. Jalabert M, Fraschini C, Prud’homme RE (2007) Synthesis and characterization of poly(l-lactide)s and poly(d-Lactide)s of controlled molecular weight. J Polym Sci Part A Polym Chem 45:1944–1955

    Article  CAS  Google Scholar 

  18. Matsumura S (2006) Enzymatic synthesis of polyesters via ring-opening polymerization. Adv Polym Sci 194:95–132

    Article  CAS  Google Scholar 

  19. Varma IK, Albertsson AC, Rajkhowa R, Srivastava RK (2005) Enzyme catalyzed synthesis of polyesters. Prog Polym Sci 30:949–981

    Article  CAS  Google Scholar 

  20. Sabatié J, Choplin L, Doublier JL, Arul J, Paul F, Monsan P (1988) Rheology of native dextrans in relation to their primary structure. Carbohydr Polym 9:287–299

    Article  Google Scholar 

  21. Erbeldinger M, Mesiano AJ, Russell AJ (2000) Enzymatic catalysis of Z-aspartame in ionic liquid—an alternative to enzymatic catalysis in organic solvents. Biotechnol Progr 16:1129–1135

    Article  CAS  Google Scholar 

  22. Yang Z, Pan WB (2005) Ionic liquids: green solvents for nonaqueous biocatalysis. Enzyme Microb Tech 37:19–28

    Article  CAS  Google Scholar 

  23. Fehér E, Major B, Bélafi-Bakó K, Gubicza L (2007) On the background of enhanced stability and reusability of enzymes in ionic liquids. Biochem Soc Trans 35:1624–1627

    Article  Google Scholar 

  24. Ulbert O, Bélafi-Bakó K, Tonova KK, Gubicza L (2005) Thermal stability enhancement of Candida rugosa lipase using ionic liquids. Biocatal Biotransfor 23:177–183

    Article  CAS  Google Scholar 

  25. Lozano P, De Diego T, Carrié D, Vaultier M, Iborra JL (2003) Enzymatic ester synthesis in ionic liquids. J Mol Catal B Enzym 21:9–13

    Article  CAS  Google Scholar 

  26. Goupil D (1996) “Sutures”, in biomaterials science: an introduction to materials in medicine. Academic Press, New York, p 356

    Google Scholar 

  27. Sosnowski S, Slomkowski S, Lorenc A, Kricheldorf HR (2002) Mechanism of dispersion polymerization of L-lactide initiated with 2, 2-dibutyl-2-stanna-1, 3-dioxepane. Colloid Polym Sci 280:107–115

    Article  CAS  Google Scholar 

  28. Osaka I, Watanabe M, Takama M, Murakami M, Arakawa R (2006) Characterization of linear and cyclic polylactic acids and their solvolysis products by electrospray ionization mass spectrometry. J Mass Spectrom 41:1369–1377

    Article  CAS  Google Scholar 

  29. He Y, Fan Z, Hu Y, Wu T, Wei J, Li S (2007) DSC analysis of isothermal melt-crystallization, glass transition and melting behavior of poly(l-lactide) with different molecular weights. Eur Polym J 43:4431–4439

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from SEP-CONACyT (project 48641) and scholarships to JRPD and MM. We are also grateful to DGAPA-UNAM for postdoctoral grant (SCh) and project number IN200109 for funding. We thank Novozymes Mexico for biocatalyst samples. We also thank USAI (Facultad de Química-UNAM) for NMR, TGA, DSC and XRD analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miquel Gimeno or Eduardo Bárzana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chanfreau, S., Mena, M., Porras-Domínguez, J.R. et al. Enzymatic synthesis of poly-l-lactide and poly-l-lactide-co-glycolide in an ionic liquid. Bioprocess Biosyst Eng 33, 629–638 (2010). https://doi.org/10.1007/s00449-009-0388-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-009-0388-8

Keywords

Navigation