Skip to main content

Advertisement

Log in

Metabolic flux and robustness analysis of glycerol metabolism in Klebsiella pneumoniae

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The knowledge of the mechanism of flux distribution will benefit understanding cell physiology and regulation of metabolism. In this study, the measured fluxes obtained under steady-state conditions were used to estimate intracellular fluxes and identify the robustness of branch points of the anaerobic glycerol metabolism in Klebsiella pneumoniae for the production of 1,3-propanediol by metabolic flux analysis. The biomass concentration increased as NADH2/NAD+ decreased at low initial concentration and inversed at high initial glycerol concentration. The flux distribution revealed that the branch points of glycerol and dihydroxyacetonephosphate were rigid to the environmental conditions. However, the pyruvate and acetyl coenzyme A metabolisms gave cells the flexibility to regulate the energy and intermediate fluxes under various environmental conditions. Additionly, it was found that the formation rate of ethanol and the ratio of pyruvate dehydrogenase to pyruvate formate lyase appeared visible fluctuations at high glycerol uptake rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Biebl H, Menzel K, Zeng AP, Deckwer WD (1999) Microbial production of 1,3-propanediol. Appl Microbiol Biotechnol 52:289–297

    Article  CAS  Google Scholar 

  2. Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14:454–459

    Article  CAS  Google Scholar 

  3. Menzel K, Zeng AP, Deckwer WD (1997) High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzyme Microb Technol 20:82–86

    Article  CAS  Google Scholar 

  4. Zeng AP, Biebl H (2002) Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv Biochem Eng Biotechnol 74:239–259

    CAS  Google Scholar 

  5. Chen X, Xiu ZL, Wang JF, Zhang DJ, Xu P (2003) Stoichiometric analysis and experimental investigation of glycerol bioconversion to 1,3-propanediol by Klebsiella pneumoniae under microaerobic conditions. Enzyme Microb Technol 33:386–394

    Article  CAS  Google Scholar 

  6. Cheng KK, Liu DH, Sun Y, Liu WB (2004) 1,3-Propanediol production by Klebsiella pneumoniae under different aeration strategies. Biotechnol Lett 26:911–915

    Article  CAS  Google Scholar 

  7. Zhang YP, Li Y, Du CY, Liu M, Cao ZA (2006) Inactivation of aldehyde dehydrogenase: a key factor for engineering 1,3-propanediol production by Klebsiella pneumoniae. Metab Eng 8:578–586

    Article  CAS  Google Scholar 

  8. Forage RG, Lin EC (1982) DHA system mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB 418. J Bacteriol 151:591–599

    CAS  Google Scholar 

  9. Tong IT, Liao HH, Cameron DC (1991) 1,3-Propanediol production by Escherichia coli expressing genes from the Klebsiella pneumoniae dha regulon. Appl Environ Microbiol 57:3541–3546

    CAS  Google Scholar 

  10. Sun JB, Heuvel JVD, Soucaille P, Qu YB, Zeng AP (2003) Comparative genomic analysis of dha regulon and related genes for anaerobic glycerol metabolism in bacteria. Biotechnol Prog 19:263–272

    Article  CAS  Google Scholar 

  11. Ahrens K, Menzel K, Zeng AP, Deckwer WD (1998) Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: III. Enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation. Biotechnol Bioeng 59:544–552

    Article  CAS  Google Scholar 

  12. Tobimatsu T, Azuma M, Matsubara H, Takatori H, Niida T, Nishimoto K, Satoh H, Hayashi R, Toraya T (1996) Cloning, sequencing, and high level expression of the genes encoding adenosylcobalamin-dependent glycerol dehydrase of Klebsiella pneumoniae. J Biol Chem 271:22352–22357

    Article  CAS  Google Scholar 

  13. Zeng AP, Menzel K, Deckwer WD (1996) Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: II. Analysis of metabolic rates and pathways under oscillation and steady-state conditions. Biotechnol Bioeng 52:561–571

    Article  CAS  Google Scholar 

  14. Fischer E, Sauer U (2005) Large-scale in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism. Nat Genet 37:636–640

    Article  CAS  Google Scholar 

  15. Wiechert W, Mollney M, Petersen S, de Graaf AA (2001) A universal framework for 13C metabolic flux analysis. Metab Eng 3:265–283

    Article  CAS  Google Scholar 

  16. Zhao J, Shimizu K (2003) Metabolic flux analysis of Escherichia coli K12 grown on 13C-labeled acetate and glucose using GC-MS and powerful flux calculation method. J Biotechnol 10:101–117

    Article  Google Scholar 

  17. Sauer U (2004) High-throughput phenomics: experimental methods for mapping fluxomes. Curr Opin Biotechnol 15:58–63

    Article  CAS  Google Scholar 

  18. Stephanopoulos G (1999) Metabolic fluxes and metabolic engineering. Metab Eng 1:1–11

    Article  CAS  Google Scholar 

  19. Shirai T, Nakato A, Izutani N, Nagahisa K, Shioya S, Kimura E, Kawarabayasi Y, Yamagishi A, Gojobori T, Shimizu H (2005) Comparative study of flux redistribution of metabolic pathway in glutamate production by two coryneform bacteria. Metab Eng 7:59–69

    Article  CAS  Google Scholar 

  20. Ozkan P, sariyar B, Utkur FO, Akman U, Hortacsu A (2005) Metabolic flux analysis of recombinant protein overproduction in Escherichia coli. Biochem Eng J 22:167–195

    Article  Google Scholar 

  21. Maczek J, Junne S, Nowak P, Goetz P (2006) Metabolic flux analysis of the sterol pathway in the yeast Saccharomyces cerevisiae. Bioprocess Biosyst Eng 29:241–252

    Article  CAS  Google Scholar 

  22. Sanchez AM, Bennett GN, San KY (2006) Batch culture characterization and metabolic flux analysis of succinate-producing Escherichia coli strains. Metab Eng 8:209–226

    Article  CAS  Google Scholar 

  23. Sun JB, Zeng AP (2004) IdentiCS—identification of coding sequence and in silico reconstruction of the metabolic network directly from unannotated low-coverage bacterial genome sequence. BMC Bioinformatics 5:112–124

    Article  Google Scholar 

  24. Zeng AP, Biebl H, Schlieker H, Deckwer WD (1993) Pathway analysis of glycerol fermentation by Klebsiella pneumoniae: regulation of reducing equivalent balance and product formation. Enzyme Microb Technol 15:770–779

    Article  CAS  Google Scholar 

  25. Menzel K, Zeng AP, Biebl H, Deckwer WD (1996) Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: Ι. The phenomena and characterization of oscillation and hysteresis. Biotechnol Bioeng 52:549–560

    Article  CAS  Google Scholar 

  26. Menzel K, Zeng AP, Deckwer WD (1997) Enzymatic evidence of involvement of pyruvate dehydrogenase in anaerobic glycerol metabolism by Klebsiella pneumoniae. J Biotechnol 56:135–142

    Article  CAS  Google Scholar 

  27. Menzel K, Ahrens K, Zeng AP, Deckwer WD (1998) Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: IV. Enzymes and fluxes of pyruvate metabolism. Biotechnol Bioeng 60:617–626

    Article  CAS  Google Scholar 

  28. Guest J, Green J, Irvine A, Spiro S, (1996) The FNR modulon and FNR-regulated gene expression. In: Lin ECC, Lynch AS (eds) Regulation of gene expression in Escherichia coli. RG Landes Company, Austin pp 317–342

    Google Scholar 

  29. Crack J, Green J, Thomson AJ (2004) Mechanism of oxygen sensing by the bacterial transcription factor fumarate-nitrate reduction (FNR). J Biol Chem 279:9278–9286

    Article  CAS  Google Scholar 

  30. Salmon K, Hung SP, Mekjian K, Baldi P, Hatfield GW, Gunsalus RP (2003) Global gene expression profiling in Escherichia coli K12: the effects of oxygen availability and FNR. J Biol Chem 278:29837–29855

    Article  CAS  Google Scholar 

  31. Kang YS, Weber KD, Qiu Y, Kiley PJ, Blattner FR (2005) Genome-wide expression analysis indicates that FNR of Escherichia coli k-12 regulates a large number of genes of unknown function. J Bacteriol 187:1135–1160

    Article  CAS  Google Scholar 

  32. Grabbe R, Kuhn A, Schmitz RA (2001) Cloning, sequencing and characterization of Fnr from Klebsiella pneumoniae. Antonie Van Leeuwenhoek 79:319–326

    Article  CAS  Google Scholar 

  33. Grabbe R, Klopprogge K, Schmitz RA (2001) FNR Is required for NifL-dependent oxygen control of nif gene expression in Klebsiella pneumoniae. J Bacteriol 183:1385–1393

    Article  CAS  Google Scholar 

  34. Du CY, Yan H, Zhang YP, Li Y, Cao ZA (2006) Use of oxidoreduction potential as an indicator to regulate 1,3-propanediol fermentation by Klebsiella pneumoniae. Appl Microbiol Biotechnol 69:554–563

    Article  CAS  Google Scholar 

  35. Zeng AP, Deckwer WD (1995) A kinetic model for substrate and energy consumption of microbial growth under substrate-sufficient conditions. Biotechnol Prog 11:71–79

    Article  CAS  Google Scholar 

  36. Daniel R, Boenigk R, Gottschalk G (1995) Purification of 1,3-propanediol dehydrogenase from Citrobacter freundii and cloning, sequencing, and overexpression of the corresponding gene in Escherichia coli. J Bacteriol 177:2151–2156

    CAS  Google Scholar 

  37. Barbirato F, Larguier A, Conte T, Astruc S, Bories A (1997) Sensitivity to pH, product inhibition, and inhibition by NAD+ of 1,3-propanediol dehydrogenase purified from Enterobacter agglomerans CNCM 1210. Arch Microbiol 168:160–163

    Article  CAS  Google Scholar 

  38. Menzel K (1999) Analyse der Stofffluesse und Metabolic Engineering der Glycerinvergaerung zu 1,3-Propandiol durch Klebsiella pneumoniae. Ph.D. thesis, German Research Center for Biotechnology (GBF), Braunschweig

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 20576018) and the grant from the Major State Basic Research Development Program of China (973 Program) (No.2007CB714306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhilong Xiu.

Appendices

Appendix 1: List of metabolic reactions

  1. 1.

    Glycerol_ext → Glycerol

  2. 2.

    Glycerol → 3-HPA + H2O

  3. 3.

    3-HPA + NADH2 → 1,3-PD + NAD

  4. 4.

    Glycerol + NAD + ATP → DHAP + NADH2 + ADP

  5. 5.

    DHAP → GA3P

  6. 6.

    GA3P + NAD + PI + ADP → PEP + ATP + NADH2 + H2O

  7. 7.

    PEP + ADP → PYR + ATP

  8. 8.

    PYR + COA + NAD → ACCOA + CO2 + NADH2

  9. 9.

    PYR + COA → ACCOA + Formate

  10. 10.

    Formate → CO2 + H2

  11. 11.

    ACCOA + 2 NADH2 → Ethanol + 2 NAD + COA

  12. 12.

    ACCOA + ADP → AC + ATP + COA

  13. 13.

    2PYR → Acetoin + 2CO2

  14. 14.

    Acetoin + NADH2 → 2,3-BD + NAD

  15. 15.

    PYR + NADH2 → LAC + NAD

  16. 16.

    GA3P + DHAP + ADP → F6P + ATP

  17. 17.

    F6P → G6P

  18. 18.

    G6P + 2 NADP + H2O → R5P + CO2 + 2 NADPH

  19. 19.

    R5P → RIB5P

  20. 20.

    R5P → XYL5P

  21. 21.

    RIB5P + XYL5P → S7P + GA3P

  22. 22.

    S7P + GA3P → E4P + F6P

  23. 23.

    XYL5P + E4P → F6P + GA3P

  24. 24.

    ACCOA + OA → CIT + COA

  25. 25.

    CIT + NAD → AKG + NADH2 + CO2

  26. 26.

    OA + 2 NADH2 → SUCC + 2 NAD

  27. 27.

    PEP + ADP + CO2 → OA + ATP

  28. 28.

    0.35 G6P + 0.523 F6P + 0.952 RIB5P + 0.4075EP + 0.383 PEP + 3.13 PYR + 1.346AKG + 1.6 OA + 1.13 ACCOA + 16.3 ATP + 6.75 NAD + 17.8 NADPH → 1g Biomass + 16.3 ADP + 6.75 NADH2 + 17.8 NADP

  29. 29.

    PYR → PYR_ext

  30. 30.

    Formate → Formate_ext

  31. 31.

    CIT_ext → CIT

  32. 32.

    Acetoin → Acetoin_ext

  33. 33.

    CO2 → CO2_ext

Appendix 2: Summary of abbreviations for the list of metabolic reactions

Table 1

Table 1  

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Teng, H., Sun, Y. et al. Metabolic flux and robustness analysis of glycerol metabolism in Klebsiella pneumoniae . Bioprocess Biosyst Eng 31, 127–135 (2008). https://doi.org/10.1007/s00449-007-0155-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-007-0155-7

Keywords

Navigation