Skip to main content
Log in

Impact of different pH control agents on biopesticidal activity of Bacillus thuringiensis during the fermentation of starch industry wastewater

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Different pH control agents (NaOH/H2SO4—SodSulp, NaOH/CH3COOH—SodAcet, NH4OH/CH3COOH—AmmoAcet and NH4OH/H2SO4—AmmoSulp) were used to investigate their effects on growth, enzyme production (alkaline protease and amylase), and entomotoxicity of Bacillus thuringiensis var. kurstaki HD-1 (Btk) against eastern spruce budworm larvae (Choristoneura fumiferana) using starch industry wastewater (SIW) as a raw material in a 15-l fermentor. AmmoSulp and SodSulp were found to be the best pH control agents for alkaline protease and amylase production, respectively; whereas, the fermented broth obtained by using SodAcet as pH control agents recorded the highest delta-endotoxin production of 1043.0 mg/l and entomotoxicity value 18.4 × 109 SBU/l. Entomotoxicity of re-suspended centrifuged pellet in one-tenth of original volume in case of SodAcet as pH control agents was 26.7 × 109 SBU/l and was the highest value compared to three other pH control agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sikdar DP, Majumdar MK, Ajumdar SKM (1991) Effect of minerals on the production of the delta endotoxin by Bacillus thuringiensis subsp. israelensis. Biotechnol Lett 13:511–514

    Article  CAS  Google Scholar 

  2. Pearson D, Ward OP (1988) Effect of culture conditions on growth and sporulation of Bacillus thuringiensis subsp. israelensis and development of media for production of the protein crystal endotoxin. Biotechnol Lett 10:451–456

    Article  CAS  Google Scholar 

  3. Jin B, Huang LP, Lant P (2003) Rhizopus arrhizus—a producer for simultaneous saccharification and fermentation of starch waste materials to L(+)-lactic acid. Biotechnol Lett 25:1983–1987

    Article  CAS  Google Scholar 

  4. Jin B, van Leeuwen HJ, Patel B, Yu Q (1998) Utilisation of starch processing wastewater for production of microbial biomass protein and fungal α-amylase by Aspergillus oryzae. Bioresour Technol 66:201–206

    Article  CAS  Google Scholar 

  5. Huang LP, Jin B, Lant P, Zhou J (2003) Biotechnological production of lactic acid integrated with potato wastewater treatment by Rhizopus arrhizus. J Chem Technol Biotechnol 78:899–906

    Article  CAS  Google Scholar 

  6. Brar SK, Verma M, Tyagi RD, Valéro JR, Surampalli RY (2006) Efficient centrifugal recovery of Bacillus thuringiensis biopesticides from fermented wastewater and wastewater sludge. Water Res 40:1310–1320

    Article  CAS  Google Scholar 

  7. Brar SK, Verma M, Tyagi RD, Valéro JR (2006) Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process Biochem 41:323–342

    Article  CAS  Google Scholar 

  8. Avignone Rossa C, Yantorno OM, Arcas JA, Ertola RJ (1990) Organic and inorganic nitrogen source ratio effects on Bacillus thuringiensis var israelensis delta-endotoxin production. World J Microbiol Biotechnol 6:27–31

    Article  Google Scholar 

  9. Kraemer-Schafhalter A, Moser A (1996) Kinetic study of Bacillus thuringiensis in lab-scale batch process. Bioprocess Eng 14:139–144

    Article  Google Scholar 

  10. Harms RL, Martinez DR, Griego VM (1986) Isolation and characterization of coproporphyrin produced by four subspecies of Bacillus thuringiensis. Appl Environ Microbiol 51:481–486

    CAS  Google Scholar 

  11. Nakata HM (1966) Role of acetate in sporogenesis of Bacillus cereus. J Bacteriol 91:784–788

    CAS  Google Scholar 

  12. Jong JJ, Wu WT, Tzeng YM (1994) pH control for fed-batch culture of Bacillus thuringiensis. Biotechnol Tech 8:483–486

    Article  CAS  Google Scholar 

  13. Yezza A, Tyagi RD, Valéro JR, Surampalli RY (2005) Influence of pH control agents on entomotoxicity potency of Bacillus thuringiensis using different raw material. World J Microbiol Biotechnol 21:1549–1558

    Article  Google Scholar 

  14. APHA, AWWA, WPCF (1998) Standard methods for examination of water and wastewaters (sections 2541B-E, 5310B, 4500-NH3 H, 4500-N B and 4500-P H), 20th edn. In: Clesceri LS, Greenberg AE, Eaton AD (eds) American Public Health Association, Washington, DC

  15. Avignone-Rossa C, Arcas J, Mignone C (1992) Bacillus thuringiensis, sporulation and δ-endotoxin production in oxygen limited and nonlimited cultures. World J Microbiol Biotechnol 8:301–304

    Article  CAS  Google Scholar 

  16. Aiba S, Humphrey AE, Millis NF (1973) Biochemical engineering, 2nd edn. Academic Press, New York

    Google Scholar 

  17. Kunitz M (1947) Crystalline soybean trypsin inhibitor. J Gen Physiol 30:291–310

    Article  CAS  Google Scholar 

  18. Miller G (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  19. Zouari N, Jaoua S (1999) Production and characterization of metalloproteases synthesized concomitantly with delta-endotoxin by Bacillus thuringiensis subsp. kurstaki strain grown on gruel-based media. Enzyme Microb Technol 25:364–371

    Article  CAS  Google Scholar 

  20. Zouari N, Jaoua S (1999) The effect of complex carbon and nitrogen, salt, Tween-80 and acetate on delta-endotoxin production by a Bacillus thuringiensis subsp. kurstaki. J Ind Microbiol Biotechnol 23:497–502

    Article  CAS  Google Scholar 

  21. Zouari Z, Ben Sik Ali S, Jaoua S (2002) Production of delta-endotoxin by several Bacillus thuringiensis strains exhibiting various entomocidal activities towards lepidoptera and diptera in gruel and fish-meal media. Enzyme Microb Technol 31:411–418

    Article  CAS  Google Scholar 

  22. Bradford MM (1976) A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  23. Dulmage HT, Boening OP, Rehnborg CS, Hansen GD (1971) A proposed standardized bioassay for formulations of Bacillus thuringiensis based on the international unit. J Invertebr Pathol 18:240–245

    Article  CAS  Google Scholar 

  24. Beegle CC (1990) Bioassay methods for quantification of Bacillus thuringiensis δ-endotoxin, analytical chemistry of Bacillus thuringiensis. In: Hickle LA, Fitch WL (eds) Analytical chemistry of Bacillus thuringiensis. American Chemical Society, Washington, DC, pp 14–21

    Google Scholar 

  25. Bulla LA Jr, Kramer KJ, Davidson LI (1977) Characterization of the entomocidal parasporal crystal of Bacillus thuringiensis. J Bacteriol 130:375–383

    CAS  Google Scholar 

  26. Monteiro SM, Clemente JJ, Henriques AO, Gomes RJ, Carrondo MJ, Cunha AE (2005) A procedure for high-yield spore production by Bacillus subtilis. Biotechnol Progress 21:1026–1031

    Article  CAS  Google Scholar 

  27. Arcas J, Yantorno OM, Ertola RJ (1987) Effect of high concentration of nutrients on Bacillus thuringiensis cultures. Biotechnol Lett 9:105–110

    Article  CAS  Google Scholar 

  28. Fisher SH (1999) Regulation of nitrogen metabolism in Bacillus subtilis: Vive la difference. Mol Microbiol 32:223–232

    Article  CAS  Google Scholar 

  29. Donovan WP, Tan Y, Slaney AC (1997) Cloning of the nprA gene for neutral protease A of Bacillus thuringiensis and effect of in vivo deletion of nprA on insecticidal crystal protein. Appl Environ Microbiol 63:2311–2317

    CAS  Google Scholar 

  30. Tyagi RD, Sikati Foko V, Barnabé S, Vidyarthi A, Valéro JR (2002) Simultaneous production of biopesticide and alkaline proteases by Bacillus thuringiensis using wastewater as a raw material. Water Sci Technol 46:247–254

    CAS  Google Scholar 

  31. Drehval OA, Chervatiuk NV, Cherevach NV, Vinnikov AI (2003) Effect of mineral nutrition sources on the growth and toxin formation of the entomopathogenic bacteria Bacillus thuringiensis. Mikrobiol Z 65:14–20 (English Translation)

    CAS  Google Scholar 

  32. Donovan WP, Donovan JC, Engleman JT (2001) Gene knockout demonstrates hat vip3A contributes to the pathogenesis of Bacillus thuringiensis toward Agrotis ipsilon and Spodoptera frugiperda. J Invertebr Pathol 78:45–51

    Article  CAS  Google Scholar 

  33. Guttmann DM, Ellar DJ (2000) Phenotypic and genotypic comparisons of 23 strains from the Bacillus cereus complex for a selection of known and putative B. thuringiensis virulence factors. FEMS Microbiol Lett 188:7–13

    Article  CAS  Google Scholar 

  34. Manker DC, Lidster WD, Starnes RL, MacIntosh SC (1994) Potentiator of Bacillus pesticidal activity. Patent Coop Treaty WO94/09630

  35. Stabb EV, Jacobsen LM, Handelsman J (1994) Zwittermicin A-producing strains of Bacillus cereus from diverse soils. Appl Environ Microbiol 60:4404–4412

    CAS  Google Scholar 

  36. Levinson BL, Kasyan KJ, Chiu SS, Currier TC, Gonzalez JM Jr (1990) Identification of β-exotoxin production, plasmids encoding β-exotoxin, and a new exotoxin in Bacillus thuringiensis by using high-performance liquid chromatography. J Bacteriol 172:3172–3179

    CAS  Google Scholar 

  37. Liu WM, Bajpai RK (1995) A modified growth medium for Bacillus thuringiensis. Biotechnol Prog 11:589–591

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are sincerely thankful to the Natural Sciences and Engineering Research Council of Canada (Grant A4984, Canada Research Chair) for financial support. The views and opinions expressed in this article are strictly those of authors. Sincere thanks to Dr. Satinder K. Brar and Dr. Simon Barnabé for reading and providing suggestions to prepare the manuscripts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. Tyagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vu, K.D., Tyagi, R.D., Valéro, J.R. et al. Impact of different pH control agents on biopesticidal activity of Bacillus thuringiensis during the fermentation of starch industry wastewater. Bioprocess Biosyst Eng 32, 511–519 (2009). https://doi.org/10.1007/s00449-008-0271-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-008-0271-z

Keywords

Navigation