Skip to main content
Log in

Production of bifunctional single-chain antibody-based fusion proteins in Pichia pastoris supernatants

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Recombinant antibody fusion constructs with heterologous functional domains are a promising approach to new therapeutic targeting strategies. However, expression of such constructs is mostly limited to cost and labor-intensive mammalian expression systems. Here we report on the employment of Pichia pastoris for the expression of heterologous antibody fusion constructs with green fluorescent protein, A33scFv::GFP, or with cytosine deaminase, A33scFv::CDy, their production in a biofermenter and a modified purification strategy. Combined, these approaches improved production yields by about thirty times over established standard protocols, with extracellular secretion of the fusion construct reaching 12.0 mg/l. Bifunctional activity of the fusion proteins was demonstrated by flow cytometry and an in-vitro cytotoxicity assay. With equal amounts of purified protein, the modified purification method lead to higher functional results. Our results demonstrate the suitability of methylotrophic Pichia expression systems and laboratory-scale bioreactors for the production of high quantities of bifunctionally active heterologous single-chain fusion proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adams GP, Weiner LM (2005) Monoclonal antibody therapy of cancer. Nat Biotechnol 23:1147–1157

    Article  CAS  Google Scholar 

  2. Damasceno LM, Anderson KA, Ritter G, Cregg JM, Old LJ, Batt CA (2006) Cooverexpression of chaperones for enhanced secretion of a single-chain antibody fragment in Pichia pastoris. Appl Microbiol Biotechnol 74:381–389

    Article  Google Scholar 

  3. Dorai H, McCartney JE, Hudziak RM, Tai MS, Laminet AA, Houston LL, Huston JS, Oppermann H (1994) Mammalian cell expression of single-chain Fv (sFv) antibody proteins and their C-terminal fusions with interleukin-2 and other effector domains. Biotechnology (N Y) 12:890–897

    Article  CAS  Google Scholar 

  4. Suzuki J, Fukuda M, Kawata S, Maruoka M, Kubo Y, Takeya T, Shishido T (2006) A rapid protein expression and purification system using Chinese hamster ovary cells expressing retrovirus receptor. J Biotechnol 126:463–474

    Article  CAS  Google Scholar 

  5. Ridder R, Schmitz R, Legay F, Gram H (1995) Generation of rabbit monoclonal antibody fragments from a combinatorial phage display library and their production in the yeast Pichia pastoris. Biotechnology (N Y) 13:255–260

    Article  CAS  Google Scholar 

  6. Freyre FM, Vazquez JE, Ayala M, Canaan-Haden L, Bell H, Rodriguez I, Gonzalez A, Cintado A, Gavilondo JV (2000) Very high expression of an anti-carcinoembryonic antigen single chain Fv antibody fragment in the yeast Pichia pastoris. J Biotechnol 76:157–163

    Article  CAS  Google Scholar 

  7. Marty C, Scheidegger P, Ballmer-Hofer K, Klemenz R, Schwendener RA (2001) Production of functionalized single-chain Fv antibody fragments binding to the ED-B domain of the B-isoform of fibronectin in Pichia pastoris. Protein Expr Purif 21:156–164

    Article  CAS  Google Scholar 

  8. Gurkan C, Ellar DJ (2005) Recombinant production of bacterial toxins and their derivatives in the methylotrophic yeast Pichia pastoris. Microb Cell Fact 4:33

    Article  Google Scholar 

  9. Liu J, Wei D, Qian F, Zhou Y, Wang J, Ma Y, Han Z (2003) pPIC9-Fc: a vector system for the production of single-chain Fv–Fc fusions in Pichia pastoris as detection reagents in vitro. J Biochem (Tokyo) 134:911–917

    CAS  Google Scholar 

  10. Emberson LM, Trivett AJ, Blower PJ, Nicholls PJ (2005) Expression of an anti-CD33 single-chain antibody by Pichia pastoris. J Immunol Methods 305:135–151

    Article  CAS  Google Scholar 

  11. Medzihradszky KF, Spencer DI, Sharma SK, Bhatia J, Pedley RB, Read DA, Begent RH, Chester KA (2004) Glycoforms obtained by expression in Pichia pastoris improve cancer targeting potential of a recombinant antibody-enzyme fusion protein. Glycobiology 14:27–37

    Article  CAS  Google Scholar 

  12. Kogelberg H, Tolner B, Sharma SK, Lowdell MW, Qureshi U, Robson M, Hillyer T, Pedley RB, Vervecken W, Contreras R, Begent RH, Chester KA (2007) Clearance mechanism of a mannosylated antibody–enzyme fusion protein used in experimental cancer therapy. Glycobiology 17:36–45

    Article  CAS  Google Scholar 

  13. Cregg J, Higgins DR (1998) Pichia Protocols. The Humana Press, Totowa

    Google Scholar 

  14. Prinz B, Schultchen J, Rydzewski R, Holz C, Boettner M, Stahl U, Lang C (2004) Establishing a versatile fermentation and purification procedure for human proteins expressed in the yeasts Saccharomyces cerevisiae and Pichia pastoris for structural genomics. J Struct Funct Genomics 5:29–44

    Article  CAS  Google Scholar 

  15. Tolner B, Smith L, Begent RH, Chester KA (2006) Production of recombinant protein in Pichia pastoris by fermentation. Nat Protoc 1:1006–1021

    Article  CAS  Google Scholar 

  16. Ellis SB, Brust PF, Koutz PJ, Waters AF, Harpold MM, Gingeras TR (1985) Isolation of alcohol oxidase and two other methanol regulatable genes from the yeast Pichia pastoris. Mol Cell Biol 5:1111–1121

    CAS  Google Scholar 

  17. Koutz P, Davis GR, Stillman C, Barringer K, Cregg J, Thill G (1989) Structural comparison of the Pichia pastoris alcohol oxidase genes. Yeast 5:167–177

    Article  CAS  Google Scholar 

  18. Chung JD (2000) Design of metabolic feed controllers: application to high-density fermentations of Pichia pastoris. Biotechnol Bioeng 68:298–307

    Article  CAS  Google Scholar 

  19. Zhang W, Bevins MA, Plantz BA, Smith LA, Meagher MM (2000) Modeling Pichia pastoris growth on methanol and optimizing the production of a recombinant protein, the heavy-chain fragment C of botulinum neurotoxin, serotype A. Biotechnol Bioeng 70:1–8

    Article  CAS  Google Scholar 

  20. Guarna MM, Cote HC, Amandoron EA, MacGillivray RT, Warren RA, Kilburn DG (1996) Engineering factor X fusions for expression in Pichia pastoris. Ann N Y Acad Sci 799:397–400

    Article  CAS  Google Scholar 

  21. Cregg JM, Cereghino JL, Shi J, Higgins DR (2000) Recombinant protein expression in Pichia pastoris. Mol Biotechnol 16:23–52

    Article  CAS  Google Scholar 

  22. Prinz B, Stahl U, Lang C (2003) Intracellular transport of a heterologous membrane protein, the human transferrin receptor, in Saccharomyces cerevisiae. Int Microbiol 6:49–55

    CAS  Google Scholar 

  23. Damasceno LM, Pla I, Chang HJ, Cohen L, Ritter G, Old LJ, Batt CA (2004) An optimized fermentation process for high-level production of a single-chain Fv antibody fragment in Pichia pastoris. Protein Expr Purif 37:18–26

    Article  CAS  Google Scholar 

  24. Petrausch U, Dernedde J, Casimiro da Silva Coelho V, Panjideh H, Frey D, Fuchs H, Thiel E, Deckert PM. A33scFv::Green fluorescent protein, a recombinant single-chain fusion protein for tumor targeting. Prot Eng Des Sel; 2 Nov. 2007 [Epub ahead of print]

  25. Coelho V, Dernedde J, Petrausch U, Panjideh H, Fuchs H, Menzel C, Dübel S, Deckert PM (2007) Design, construction, and in vitro analysis of A33scFv::CDy, a recombinant fusion protein for antibody-directed enzyme prodrug therapy (ADEPT) in colon cancer. Int.J.Oncol. 31:951–957

    CAS  Google Scholar 

  26. Cregg JM, Vedvick TS, Raschke WC (1993) Recent advances in the expression of foreign genes in Pichia pastoris. Biotechnology (N Y) 11:905–910

    Article  CAS  Google Scholar 

  27. Rader C, Ritter G, Nathan S, Elia M, Gout I, Jungbluth AA, Cohen LS, Welt S, Old LJ, Barbas CF III (2000) The rabbit antibody repertoire as a novel source for the generation of therapeutic human antibodies. J Biol Chem 275:13668–13676

    Article  CAS  Google Scholar 

  28. Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249–270

    Article  CAS  Google Scholar 

  29. Daly R, Hearn MT (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18:119–138

    Article  CAS  Google Scholar 

  30. Gomes Pereira NA, Juliano MA, Carmona AK, Sturrock ED, Kotwal GJ (2005) Cloning and Expression of a Functionally Active Truncated N-Glycosylated KSHV ORF4/KCP/Kaposica in the Methylotrophic Yeast Pichia pastoris. Ann N Y Acad Sci 1056:388–404

    Article  CAS  Google Scholar 

  31. Shi J, Zhang ST, Zhang XJ, Xu H, Guo AG (2007) Expression, purification, and activity identification of Alfimeprase in Pichia pastoris. Protein Expr Purif 54:240–246

    Article  CAS  Google Scholar 

  32. Werten MW, van den Bosch TJ, Wind RD, Mooibroek H, de Wolf FA (1999) High-yield secretion of recombinant gelatins by Pichia pastoris. Yeast 15:1087–1096

    Article  CAS  Google Scholar 

  33. Pla IA, Damasceno LM, Vannelli T, Ritter G, Batt CA, Shuler ML (2006) Evaluation of Mut+ and MutS Pichia pastoris phenotypes for high level extracellular scFv expression under feedback control of the methanol concentration. Biotechnol Prog 22:881–888

    Article  CAS  Google Scholar 

  34. Deckert PM, Renner C, Cohen LS, Jungbluth A, Ritter G, Bertino JR, Old LJ, Welt S (2003) A33scFv-cytosine deaminase: a recombinant protein construct for antibody-directed enzyme-prodrug therapy. Br J Cancer 88:937–939

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by an Ernst-von-Leyden Stipendium of the Berliner Krebsgesellschaft to Vânia Coelho and by Deutsche Krebshilfe grant no. 1072981 to PMD.

Competing interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Markus Deckert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panjideh, H., Coelho, V., Dernedde, J. et al. Production of bifunctional single-chain antibody-based fusion proteins in Pichia pastoris supernatants. Bioprocess Biosyst Eng 31, 559–568 (2008). https://doi.org/10.1007/s00449-008-0203-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-008-0203-y

Keywords

Navigation