Skip to main content
Log in

Cooverexpression of chaperones for enhanced secretion of a single-chain antibody fragment in Pichia pastoris

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In Pichia pastoris, secretion of the A33 single-chain antibody fragment (A33scFv) was shown to reach levels of approximately 4 g l−1 in fermentor cultures. In this study, we investigated whether manipulating chaperone and foldase levels in P. pastoris could further increase secretion of A33scFv. Cells were engineered to cooverexpress immunoglobulin binding protein (BiP) and/or protein disulfide isomerase (PDI) with A33scFv during growth in methanol as the sole carbon and energy source. Cooverexpression of BiP resulted in increased secretion levels of A33scFv by approximately threefold. In contrast, cooverexpression of PDI had no apparent effect on secretion of A33scFv. In cells cooverexpressing BiP and PDI, A33scFv secretion did not increase and protein levels remained the same as the control strain. We believe that secretion of A33scFv is increased by cooverexpression of BiP as a result of an increase in folding capacity inside the endoplasmic reticulum (ER). In addition, lack of increased single-chain secretion when PDI is coexpressed was unexpected due to the presence of disulfide bonds in A33scFv. We also show that during PDI cooverexpression with the single-chain there is a sixfold increase in BiP levels, indicating that the former is possibly inducing an unfolded protein response due to excess chaperone and recombinant protein in the ER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bernales S, Papa FR, Walter P (2006) Intracellular signaling by the unfolded protein response. Annu Rev Cell Dev Biol (in press)

  • Brodsky JL, Werner ED, Dubas ME, Goeckeler JL, Kruse KB, McCracken AA (1999) The requirement for molecular chaperones during endoplasmic reticulum-associated protein degradation demonstrates that protein export and import are mechanistically distinct. J Biol Chem 274(6):3453–3460

    CAS  PubMed  Google Scholar 

  • Cereghino GP, Cereghino JL, Ilgen C, Cregg JM (2002) Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr Opin Biotechnol 13(4):329–332

    PubMed  Google Scholar 

  • Cregg JM, Vedvick TS, Raschke WC (1993) Recent advances in the expression of foreign genes in Pichia pastoris. Biotechnology (N Y) 11(8):905–910

    CAS  Google Scholar 

  • Damasceno LM, Pla I, Chang HJ, Cohen L, Ritter G, Old LJ, Batt CA (2004) An optimized fermentation process for high-level production of a single-chain Fv antibody fragment in Pichia pastoris. Protein Expr Purif 37(1):18–26

    CAS  PubMed  Google Scholar 

  • Ellgaard L, Helenius A (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4(3):181–191

    CAS  PubMed  Google Scholar 

  • Haas IG, Wabl M (1983) Immunoglobulin heavy chain binding protein. Nature 306(5941):387–389

    CAS  PubMed  Google Scholar 

  • Hammond C, Helenius A (1994) Quality control in the secretory pathway: retention of a misfolded viral membrane glycoprotein involves cycling between the ER, intermediate compartment, and Golgi apparatus. J Cell Biol 126(1):41–52

    CAS  PubMed  Google Scholar 

  • Harmsen MM, Bruyne MI, Raue HA, Maat J (1996) Overexpression of binding protein and disruption of the PMR1 gene synergistically stimulate secretion of bovine prochymosin but not plant thaumatin in yeast. Appl Microbiol Biotechnol 46(4):365–370

    CAS  PubMed  Google Scholar 

  • Horton P, Nakai K (1997) Better prediction of protein cellular localization sites with the k nearest neighbors classifier. Proc Int Conf Intell Syst Mol Biol 5:147–152

    CAS  PubMed  Google Scholar 

  • Hsu TA, Eiden JJ, Bourgarel P, Meo T, Betenbaugh MJ (1994) Effects of co-expressing chaperone BiP on functional antibody production in the baculovirus system. Protein Expr Purif 5(6):595–603

    CAS  PubMed  Google Scholar 

  • Inan M, Aryasomayajula D, Sinha J, Meagher MM (2005) Enhancement of protein secretion in Pichia pastoris by overexpression of protein disulfide isomerase. Biotechnol Bioeng 93(4):771–778

    Google Scholar 

  • Klein C, de Lamotte-Guery F, Gautier F, Moulin G, Boze H, Joudrier P, Gautier MF (1998) High-level secretion of a wheat lipid transfer protein in Pichia pastoris. Protein Expr Purif 13(1):73–82

    CAS  PubMed  Google Scholar 

  • Knappik A, Pluckthun A (1995) Engineered turns of a recombinant antibody improve its in vivo folding. Protein Eng 8(1):81–89

    CAS  PubMed  Google Scholar 

  • Kobayashi K, Kuwae S, Ohya T, Ohda T, Ohyama M, Tomomitsu K (2000) High level secretion of recombinant human serum albumin by fed-batch fermentation of the methylotrophic yeast, Pichia pastoris, based on optimal methanol feeding strategy. J Biosci Bioeng 90(3):280–288

    CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Liu YY, Woo JH, Neville DM (2003) Targeted introduction of a diphtheria toxin resistant mutation into the chromosomal EF-2 locus of Pichia pastoris and expression of immunotoxin in the EF-2 mutants. Protein Expr Purif 30(2):262–274

    CAS  PubMed  Google Scholar 

  • Liu YY, Woo JH, Neville DM Jr (2005) Overexpression of an anti-CD3 immunotoxin increases expression and secretion of molecular chaperone BiP/Kar2p by Pichia pastoris. Appl Environ Microbiol 71(9):5332–5340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lodish HF, Kong N, Snider M, Strous GJ (1983) Hepatoma secretory proteins migrate from rough endoplasmic reticulum to Golgi at characteristic rates. Nature 304(5921):80–83

    CAS  PubMed  Google Scholar 

  • Lyles MM, Gilbert HF (1991) Catalysis of the oxidative folding of ribonuclease A by protein disulfide isomerase: dependence of the rate on the composition of the redox buffer. Biochemistry 30(3):613–619

    CAS  PubMed  Google Scholar 

  • Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22(4):249–270

    CAS  PubMed  Google Scholar 

  • Matlack KE, Misselwitz B, Plath K, Rapoport TA (1999) BiP acts as a molecular ratchet during posttranslational transport of prepro-alpha factor across the ER membrane. Cell 97(5):553–564

    CAS  PubMed  Google Scholar 

  • Mattanovich D, Gasser B, Hohenblum H, Sauer M (2004) Stress in recombinant protein producing yeasts. J Biotechnol 113(1–3):121–135

    CAS  PubMed  Google Scholar 

  • Nicholson RC, Williams DB, Moran LA (1990) An essential member of the HSP70 gene family of Saccharomyces cerevisiae is homologous to immunoglobulin heavy chain binding protein. Proc Natl Acad Sci U S A 87(3):1159–1163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nieba L, Honegger A, Krebber C, Pluckthun A (1997) Disrupting the hydrophobic patches at the antibody variable/constant domain interface: improved in vivo folding and physical characterization of an engineered scFv fragment. Protein Eng 10(4):435–444

    CAS  PubMed  Google Scholar 

  • Ohba H, Harano T, Omura T (1981) Intracellular and intramembranous localization of a protein disulfide isomerase in rat liver. J Biochem (Tokyo) 89(3):889–900

    CAS  Google Scholar 

  • Parekh R, Forrester K, Wittrup D (1995) Multicopy overexpression of bovine pancreatic trypsin inhibitor saturates the protein folding and secretory capacity of Saccharomyces cerevisiae. Protein Expr Purif 6(4):537–545

    CAS  PubMed  Google Scholar 

  • Primm TP, Walker KW, Gilbert HF (1996) Facilitated protein aggregation. Effects of calcium on the chaperone and anti-chaperone activity of protein disulfide-isomerase. J Biol Chem 271(52):33664–33669

    CAS  PubMed  Google Scholar 

  • Prinz B, Stahl U, Lang C (2003) Intracellular transport of a heterologous membrane protein, the human transferrin receptor, in Saccharomyces cerevisiae. Int Microbiol 6(1):49–55

    CAS  PubMed  Google Scholar 

  • Puig A, Gilbert HF (1994) Protein disulfide isomerase exhibits chaperone and anti-chaperone activity in the oxidative refolding of lysozyme. J Biol Chem 269(10):7764–7771

    CAS  PubMed  Google Scholar 

  • Robinson AS, Hines V, Wittrup KD (1994) Protein disulfide isomerase overexpression increases secretion of foreign proteins in Saccharomyces cerevisiae. Biotechnology (N Y) 12(4):381–384

    CAS  Google Scholar 

  • Rowling PJ, Freedman RB (1993) Folding, assembly, and posttranslational modification of proteins within the lumen of the endoplasmic reticulum. Subcell Biochem 21:41–80

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Schroder M, Kaufman RJ (2005) ER stress and the unfolded protein response. Mutat Res 569(1–2):29–63

    PubMed  Google Scholar 

  • Shusta EV, Raines RT, Pluckthun A, Wittrup KD (1998) Increasing the secretory capacity of Saccharomyces cerevisiae for production of single-chain antibody fragments. Nat Biotechnol 16(8):773–777

    CAS  PubMed  Google Scholar 

  • Shuster JR (1991) Gene expression in yeast: protein secretion. Curr Opin Biotechnol 2(5):685–690

    CAS  PubMed  Google Scholar 

  • Smith JD, Robinson AS (2002) Overexpression of an archaeal protein in yeast: secretion bottleneck at the ER. Biotechnol Bioeng 79(7):713–723

    CAS  PubMed  Google Scholar 

  • Smith JD, Tang BC, Robinson AS (2004) Protein disulfide isomerase, but not binding protein, overexpression enhances secretion of a non-disulfide-bonded protein in yeast. Biotechnol Bioeng 85(3):340–350

    CAS  PubMed  Google Scholar 

  • Song JL, Wang CC (1995) Chaperone-like activity of protein disulfide-isomerase in the refolding of rhodanese. Eur J Biochem 231(2):312–316

    CAS  PubMed  Google Scholar 

  • Tsai B, Ye Y, Rapoport TA (2002) Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nat Rev Mol Cell Biol 3(4):246–255

    CAS  PubMed  Google Scholar 

  • Vad R, Nafstad E, Dahl LA, Gabrielsen OS (2005) Engineering of a Pichia pastoris expression system for secretion of high amounts of intact human parathyroid hormone. J Biotechnol 116(3):251–260

    CAS  PubMed  Google Scholar 

  • van der Heide M, Hollenberg CP, van der Klei IJ, Veenhuis M (2002) Overproduction of BiP negatively affects the secretion of Aspergillus niger glucose oxidase by the yeast Hansenula polymorpha. Appl Microbiol Biotechnol 58(4):487–494

    PubMed  Google Scholar 

  • van Vliet C, Thomas EC, Merino-Trigo A, Teasdale RD, Gleeson PA (2003) Intracellular sorting and transport of proteins. Prog Biophys Mol Biol 83(1):1–45

    PubMed  Google Scholar 

  • Warsame A, Vad R, Kristensen T, Oyen TB (2001) Characterization of a gene encoding a Pichia pastoris protein disulfide isomerase. Biochem Biophys Res Commun 281(5):1176–1182

    CAS  PubMed  Google Scholar 

  • Wilkinson B, Gilbert HF (2004) Protein disulfide isomerase. Biochim Biophys Acta 1699(1–2):35–44

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Charles K. Barlowe from Dartmouth University for providing the anti-Kar2p for our BiP analyses. This project was funded by the Ludwig Institute for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leonardo M. Damasceno or Carl A. Batt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damasceno, L.M., Anderson, K.A., Ritter, G. et al. Cooverexpression of chaperones for enhanced secretion of a single-chain antibody fragment in Pichia pastoris . Appl Microbiol Biotechnol 74, 381–389 (2007). https://doi.org/10.1007/s00253-006-0652-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0652-7

Keywords

Navigation