Bioprocess and Biosystems Engineering

, Volume 31, Issue 2, pp 127–135 | Cite as

Metabolic flux and robustness analysis of glycerol metabolism in Klebsiella pneumoniae

  • Qingrui Zhang
  • Hu Teng
  • Yaqin Sun
  • Zhilong XiuEmail author
  • Anping Zeng
Original Paper


The knowledge of the mechanism of flux distribution will benefit understanding cell physiology and regulation of metabolism. In this study, the measured fluxes obtained under steady-state conditions were used to estimate intracellular fluxes and identify the robustness of branch points of the anaerobic glycerol metabolism in Klebsiella pneumoniae for the production of 1,3-propanediol by metabolic flux analysis. The biomass concentration increased as NADH2/NAD+ decreased at low initial concentration and inversed at high initial glycerol concentration. The flux distribution revealed that the branch points of glycerol and dihydroxyacetonephosphate were rigid to the environmental conditions. However, the pyruvate and acetyl coenzyme A metabolisms gave cells the flexibility to regulate the energy and intermediate fluxes under various environmental conditions. Additionly, it was found that the formation rate of ethanol and the ratio of pyruvate dehydrogenase to pyruvate formate lyase appeared visible fluctuations at high glycerol uptake rate.


1,3-Propanediol Klebsiella pneumoniae Metabolic flux analysis Glycerol metabolism Metabolic network 



This work was supported by the National Natural Science Foundation of China (No. 20576018) and the grant from the Major State Basic Research Development Program of China (973 Program) (No.2007CB714306).


  1. 1.
    Biebl H, Menzel K, Zeng AP, Deckwer WD (1999) Microbial production of 1,3-propanediol. Appl Microbiol Biotechnol 52:289–297CrossRefGoogle Scholar
  2. 2.
    Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14:454–459CrossRefGoogle Scholar
  3. 3.
    Menzel K, Zeng AP, Deckwer WD (1997) High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzyme Microb Technol 20:82–86CrossRefGoogle Scholar
  4. 4.
    Zeng AP, Biebl H (2002) Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv Biochem Eng Biotechnol 74:239–259Google Scholar
  5. 5.
    Chen X, Xiu ZL, Wang JF, Zhang DJ, Xu P (2003) Stoichiometric analysis and experimental investigation of glycerol bioconversion to 1,3-propanediol by Klebsiella pneumoniae under microaerobic conditions. Enzyme Microb Technol 33:386–394CrossRefGoogle Scholar
  6. 6.
    Cheng KK, Liu DH, Sun Y, Liu WB (2004) 1,3-Propanediol production by Klebsiella pneumoniae under different aeration strategies. Biotechnol Lett 26:911–915CrossRefGoogle Scholar
  7. 7.
    Zhang YP, Li Y, Du CY, Liu M, Cao ZA (2006) Inactivation of aldehyde dehydrogenase: a key factor for engineering 1,3-propanediol production by Klebsiella pneumoniae. Metab Eng 8:578–586CrossRefGoogle Scholar
  8. 8.
    Forage RG, Lin EC (1982) DHA system mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB 418. J Bacteriol 151:591–599Google Scholar
  9. 9.
    Tong IT, Liao HH, Cameron DC (1991) 1,3-Propanediol production by Escherichia coli expressing genes from the Klebsiella pneumoniae dha regulon. Appl Environ Microbiol 57:3541–3546Google Scholar
  10. 10.
    Sun JB, Heuvel JVD, Soucaille P, Qu YB, Zeng AP (2003) Comparative genomic analysis of dha regulon and related genes for anaerobic glycerol metabolism in bacteria. Biotechnol Prog 19:263–272CrossRefGoogle Scholar
  11. 11.
    Ahrens K, Menzel K, Zeng AP, Deckwer WD (1998) Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: III. Enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation. Biotechnol Bioeng 59:544–552CrossRefGoogle Scholar
  12. 12.
    Tobimatsu T, Azuma M, Matsubara H, Takatori H, Niida T, Nishimoto K, Satoh H, Hayashi R, Toraya T (1996) Cloning, sequencing, and high level expression of the genes encoding adenosylcobalamin-dependent glycerol dehydrase of Klebsiella pneumoniae. J Biol Chem 271:22352–22357CrossRefGoogle Scholar
  13. 13.
    Zeng AP, Menzel K, Deckwer WD (1996) Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: II. Analysis of metabolic rates and pathways under oscillation and steady-state conditions. Biotechnol Bioeng 52:561–571CrossRefGoogle Scholar
  14. 14.
    Fischer E, Sauer U (2005) Large-scale in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism. Nat Genet 37:636–640CrossRefGoogle Scholar
  15. 15.
    Wiechert W, Mollney M, Petersen S, de Graaf AA (2001) A universal framework for 13C metabolic flux analysis. Metab Eng 3:265–283CrossRefGoogle Scholar
  16. 16.
    Zhao J, Shimizu K (2003) Metabolic flux analysis of Escherichia coli K12 grown on 13C-labeled acetate and glucose using GC-MS and powerful flux calculation method. J Biotechnol 10:101–117CrossRefGoogle Scholar
  17. 17.
    Sauer U (2004) High-throughput phenomics: experimental methods for mapping fluxomes. Curr Opin Biotechnol 15:58–63CrossRefGoogle Scholar
  18. 18.
    Stephanopoulos G (1999) Metabolic fluxes and metabolic engineering. Metab Eng 1:1–11CrossRefGoogle Scholar
  19. 19.
    Shirai T, Nakato A, Izutani N, Nagahisa K, Shioya S, Kimura E, Kawarabayasi Y, Yamagishi A, Gojobori T, Shimizu H (2005) Comparative study of flux redistribution of metabolic pathway in glutamate production by two coryneform bacteria. Metab Eng 7:59–69CrossRefGoogle Scholar
  20. 20.
    Ozkan P, sariyar B, Utkur FO, Akman U, Hortacsu A (2005) Metabolic flux analysis of recombinant protein overproduction in Escherichia coli. Biochem Eng J 22:167–195CrossRefGoogle Scholar
  21. 21.
    Maczek J, Junne S, Nowak P, Goetz P (2006) Metabolic flux analysis of the sterol pathway in the yeast Saccharomyces cerevisiae. Bioprocess Biosyst Eng 29:241–252CrossRefGoogle Scholar
  22. 22.
    Sanchez AM, Bennett GN, San KY (2006) Batch culture characterization and metabolic flux analysis of succinate-producing Escherichia coli strains. Metab Eng 8:209–226CrossRefGoogle Scholar
  23. 23.
    Sun JB, Zeng AP (2004) IdentiCS—identification of coding sequence and in silico reconstruction of the metabolic network directly from unannotated low-coverage bacterial genome sequence. BMC Bioinformatics 5:112–124CrossRefGoogle Scholar
  24. 24.
    Zeng AP, Biebl H, Schlieker H, Deckwer WD (1993) Pathway analysis of glycerol fermentation by Klebsiella pneumoniae: regulation of reducing equivalent balance and product formation. Enzyme Microb Technol 15:770–779CrossRefGoogle Scholar
  25. 25.
    Menzel K, Zeng AP, Biebl H, Deckwer WD (1996) Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: Ι. The phenomena and characterization of oscillation and hysteresis. Biotechnol Bioeng 52:549–560CrossRefGoogle Scholar
  26. 26.
    Menzel K, Zeng AP, Deckwer WD (1997) Enzymatic evidence of involvement of pyruvate dehydrogenase in anaerobic glycerol metabolism by Klebsiella pneumoniae. J Biotechnol 56:135–142CrossRefGoogle Scholar
  27. 27.
    Menzel K, Ahrens K, Zeng AP, Deckwer WD (1998) Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: IV. Enzymes and fluxes of pyruvate metabolism. Biotechnol Bioeng 60:617–626CrossRefGoogle Scholar
  28. 28.
    Guest J, Green J, Irvine A, Spiro S, (1996) The FNR modulon and FNR-regulated gene expression. In: Lin ECC, Lynch AS (eds) Regulation of gene expression in Escherichia coli. RG Landes Company, Austin pp 317–342Google Scholar
  29. 29.
    Crack J, Green J, Thomson AJ (2004) Mechanism of oxygen sensing by the bacterial transcription factor fumarate-nitrate reduction (FNR). J Biol Chem 279:9278–9286CrossRefGoogle Scholar
  30. 30.
    Salmon K, Hung SP, Mekjian K, Baldi P, Hatfield GW, Gunsalus RP (2003) Global gene expression profiling in Escherichia coli K12: the effects of oxygen availability and FNR. J Biol Chem 278:29837–29855CrossRefGoogle Scholar
  31. 31.
    Kang YS, Weber KD, Qiu Y, Kiley PJ, Blattner FR (2005) Genome-wide expression analysis indicates that FNR of Escherichia coli k-12 regulates a large number of genes of unknown function. J Bacteriol 187:1135–1160CrossRefGoogle Scholar
  32. 32.
    Grabbe R, Kuhn A, Schmitz RA (2001) Cloning, sequencing and characterization of Fnr from Klebsiella pneumoniae. Antonie Van Leeuwenhoek 79:319–326CrossRefGoogle Scholar
  33. 33.
    Grabbe R, Klopprogge K, Schmitz RA (2001) FNR Is required for NifL-dependent oxygen control of nif gene expression in Klebsiella pneumoniae. J Bacteriol 183:1385–1393CrossRefGoogle Scholar
  34. 34.
    Du CY, Yan H, Zhang YP, Li Y, Cao ZA (2006) Use of oxidoreduction potential as an indicator to regulate 1,3-propanediol fermentation by Klebsiella pneumoniae. Appl Microbiol Biotechnol 69:554–563CrossRefGoogle Scholar
  35. 35.
    Zeng AP, Deckwer WD (1995) A kinetic model for substrate and energy consumption of microbial growth under substrate-sufficient conditions. Biotechnol Prog 11:71–79CrossRefGoogle Scholar
  36. 36.
    Daniel R, Boenigk R, Gottschalk G (1995) Purification of 1,3-propanediol dehydrogenase from Citrobacter freundii and cloning, sequencing, and overexpression of the corresponding gene in Escherichia coli. J Bacteriol 177:2151–2156Google Scholar
  37. 37.
    Barbirato F, Larguier A, Conte T, Astruc S, Bories A (1997) Sensitivity to pH, product inhibition, and inhibition by NAD+ of 1,3-propanediol dehydrogenase purified from Enterobacter agglomerans CNCM 1210. Arch Microbiol 168:160–163CrossRefGoogle Scholar
  38. 38.
    Menzel K (1999) Analyse der Stofffluesse und Metabolic Engineering der Glycerinvergaerung zu 1,3-Propandiol durch Klebsiella pneumoniae. Ph.D. thesis, German Research Center for Biotechnology (GBF), BraunschweigGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Qingrui Zhang
    • 1
    • 2
  • Hu Teng
    • 1
  • Yaqin Sun
    • 1
  • Zhilong Xiu
    • 1
    Email author
  • Anping Zeng
    • 3
  1. 1.Department of Bioscience and BiotechnologyDalian University of TechnologyDalianPeople’s Republic of China
  2. 2.Department of Chemical EngineeringQingdao University of Science and TechnologyQingdaoPeople’s Republic of China
  3. 3.Institute of Bioprocess and Biosystems EngineeringTechnical University Hamburg-HarburgHamburgGermany

Personalised recommendations