Skip to main content
Log in

Formation of caldera periphery faults: an experimental study

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Changing stresses in multi-stage caldera volcanoes were simulated in scaled analogue experiments aiming to reconstruct the mechanism(s) associated with caldera formation and the corresponding zones of structural weakness. We evaluate characteristic structures resulting from doming (chamber inflation), evacuation collapse (chamber deflation) and cyclic resurgence (inflation and deflation), and we analyse the consequential fault patterns and their statistical relationship to morphology and geometry. Doming results in radial fractures and subordinate concentric reverse faults which propagate divergently from the chamber upwards with increasing dilation. The structural dome so produced is characterised bysteepening in the periphery, whereas the broadening apex subsides. Pure evacuation causes the chamber roof to collapse along adjacent bell-shaped reverse faults. The distribution of concentric faults is influenced by the initial edifice morphology; steep and irregular initial flanks result in a tilted or chaotic caldera floor. The third set of experiments focused on the structural interaction of cyclic inflation and subsequent moderate deflation. Following doming, caldera subsidence produces concentric faults that characteristically crosscut radial cracks of the dome. The flanks of the edifice relax, resulting in discontinuous circumferential faults that outline a structural network of radial and concentric faults; the latter form locally uplifted and tiltedwedges (half-grabens) that grade into horst-and-graben structures. This superimposed fault pattern also extends inside the caldera. We suggest that major pressure deviations in magma chamber(s) are reflected in the fault arrangement dissecting the volcanoflanks and may be used as a first-order indication of the processes and mechanisms involved in caldera formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson EM (1937) Cone sheets and ring dykes; the dynamical explanation. Bull Volcanol 1:35–40

    Article  Google Scholar 

  • Aramaki S (1984) Formation of the Aira caldera, southern Kyushu, ∼22,000 years ago. J Geophys Res 89:8485–8501

    Article  Google Scholar 

  • Branney MJ (1995) Downsag and extension at calderas. New perspectives on collapse geometries from ice-melt, mining, and volcanic subsidence. Bull Volcanol 57:303–318

    Google Scholar 

  • Branney MJ, Kokelaar P (1994) Rheomorphism and soft-state deformation of tuffs induced by volcanotectonic faulting at a piecemeal caldera, English Lake District. Bull Geol Soc Am 106:507–530

    Article  Google Scholar 

  • Byerlee J (1978) Friction of rocks. Pure Appi Geophvs 116:615–626

    Article  Google Scholar 

  • Chadwick WW, Dieterich JH (1995) Mechanical modeling of circumferential and radial dyke intrusion on Galapagos volcanoes. J Volcanol Geotherm Res 66:37–52

    Article  Google Scholar 

  • Cobbold PR, Castro L (1999) Fluid pressure and effective stress in sandbox models. Tectonophysics 301:1–19

    Article  Google Scholar 

  • Druitt TH, Sparks RSJ (1984) On the formation of calderas during ignimbrite eruptions. Nature 310:679–681

    Article  Google Scholar 

  • Emeleus CH (1997) Geology of Rum and the adjacent islands. Mem British Geol Surv Scotland, Sheet 60

  • Fujita Y, Kawakita T, Arai T (1970) Tectonogenesis in the formative process of the Motojuku Green Tuff beds. Assoc Geol Collabor Japan 16:81–95

    Google Scholar 

  • Glicken H, Janda RJ, Voight B (1980) Catastrophic landslide/ debris avalanche of May 18, 1980. Mount St. Helens volcano. EOS Trans Am Geophys Union 61:1135

    Google Scholar 

  • Gudmundsson A (1988) Formation of collapse calderas. Geology 16:808–810

    Article  Google Scholar 

  • Gudmundsson A (1998) Formation and development of normal-fault calderas and the initiation of large explosive eruptions. Bull Volcanol 60:160–170

    Article  Google Scholar 

  • Gudmundsson A, Marti J, Turon E (1997) Stress fields generating ring faults in volcanoes. Geophys Res Lett 24:1559–1562

    Article  Google Scholar 

  • Hoshino K, Koide H, Inami K, Iwamura S, Mitsui S (1972) Mechanical properties of Japanese Tertiary sedimentary rocks under high confining pressures. Geol Surv Japan 244:1–200

    Google Scholar 

  • Hubbert M (1937) Theory of scale models as applied to the study of geologic structures. Geol Soc Am Bull 48:1459–1520

    Google Scholar 

  • Hubbert M (1951) Mechanical basis for certain familiar geologic structures. Geol Soc Am Bull 62:355–372

    Article  Google Scholar 

  • Jones RH, Stewart RC (1997) A method for determining significant structures in a cloud of earthquakes. J Geophvs Res 102:8245–8254

    Article  Google Scholar 

  • Komuro H (1987) Experiments on cauldron formation: a polygonal cauldron and ring fractures. J Volcanol Geotherm Res 31:139–149

    Article  Google Scholar 

  • Komuro H, Fujita Y, Kodama K (1984) Numerical and experimental models on the formation mechanism of collapse basins during the Green Tuff orogenesis of Japan. Bull Volcanol 47:649–666

    Article  Google Scholar 

  • Krantz RW (1991) Normal fault geometry and fault reactivation in tectonic inversion experiments. Geol Soc Spec Publ 56:219–229

    Article  Google Scholar 

  • Lipman PW (1997) Subsidence of ash-flow calderas: relation to caldera size and chamber geometry. Bull Volcanol 59:198–218

    Article  Google Scholar 

  • Mandi G (1988) Mechanics of tectonic faulting; models and basic concepts. Elsevier, Amsterdam

    Google Scholar 

  • Marti J, Ablay GS, Redshaw LT, Sparks RSJ (1994) Experimental studies of collapse calderas. J Geol Soc London 151:919–929

    Article  Google Scholar 

  • Marti J, Folch A, Neri A, Macedonio G (2000) Pressure evolution during explosive caldera-forming eruptions. Earth Planet Sci Lett 175:275–287

    Article  Google Scholar 

  • McBirney AR, Williams H (1969) Geology and petrology of the Galapagos Islands. Geol Soc Am Mem 118:1–197

    Google Scholar 

  • McLeod P, Tait S (1999) The growth of dvkes from magma chambers. J Volcanol Geotherm Res 92: 231–246

    Article  Google Scholar 

  • Moore I, Kokelaar P (1998) Technically controlled piecemeal caldera collapse: a case study of Glen Coe volcano, Scotland. Geol Soc Am Bull 110:1448–1466

    Article  Google Scholar 

  • Mori J, McKee CO (1987) Outward-dipping ring fault structure at Rabaul Caldera as shown bv earthquake locations. Science 235:193–197

    Article  Google Scholar 

  • Nakada S, Fujii T (2000) Sequence and interpretation of Caldera-Forming Event at Miyakejima Volcano, Japan. EOS Trans Am Geophys Union 81:1258

    Google Scholar 

  • Newhall C, Dzurisin D (1988) Historical unrest at large calderas of the world. US Geol Surv Bull 1855:1–1108

    Google Scholar 

  • Ode H (1957) Mechanical analysis of the dyke pattern of the Spanish Peaks area, Colorado. Geol Soc Am Bull 68:567–570

    Article  Google Scholar 

  • Odonne F, Menard I, Massonnat GJ, Rolando JP (1999) Abnormal reverse faulting above a depleting reservoir. Geology 27:111–114

    Article  Google Scholar 

  • Prucha JJ (1965) Deformation of Silurian salt in Cayuga Rock Salt Company Mine, Myers. New York. EOS Trans Am Geophys Union 46:163

    Google Scholar 

  • Ramberg H (1981) Deformation structures in theory and experiments. Geol Soc Sweden. 131 pp

  • Roche O, Druitt T, Merle O (2000) Experimental study of caldera formation. J Geophys Res 105:395–416

    Article  Google Scholar 

  • Rowland SK (1996) Slopes, lava flow volumes, and vent distributions on Volcano Fernandino, Galapagos Islands. J Geophys Res 101:23657–23672

    Google Scholar 

  • Sanford A (1959) Analytical and experimental study of simple geological structures. Geol Soc Am Bull 42:19–52

    Article  Google Scholar 

  • Scandone R (1990) Chaotic collapse of calderas. J Volcanol Geotherm Res 42:285–302

    Article  Google Scholar 

  • Schmincke H-U (1967) Cone sheet swarm, resurgence of Tejeda Caldera, and the early geologic history of Gran Canaria. Bull Volcanol 31:153–162

    Article  Google Scholar 

  • Schmincke H-U (1968) Faulting versus erosion and the reconstruction of the mid-Miocene shield volcano of Gran Canaria. Geol Mitt 8:23–50

    Google Scholar 

  • Schmincke H-U (1969) Ignimbrite sequence on Gran Canaria. Bull Volcanol 33:1199–1219

    Article  Google Scholar 

  • Schmincke H-U (1976) The geology of the Canary Islands. In: Kunkel G (ed) Ecology and biogeography of the Canary islands. Junk, Holland, pp 76–184

  • Schmincke H-U (1994) Geological field guide of Gran Canaria. Part I and II. Pluto Press, Kiel, pp 1–64

    Google Scholar 

  • Schultz RA (1996) Relative scale and the strength and deformability of rock masses. J Struct Geol 18:1139–1149

    Article  Google Scholar 

  • Simkin T, Howard KA (1970) Caldera collapse in the Galapagos islands, 1968. Science 169:429–437

    Article  Google Scholar 

  • Simons M, Fialko Y, Rivera L, Chapin E, Hensley S, Rosen PA, Shaffer S, Webb FH, Langbein J (2000) Analysis of geodetic measurements of crustal deformation at Long Valley Caldera. EOS Trans Am Geophys Union 81:1322

    Google Scholar 

  • Smith R, Bailey R (1968) Resursent cauldrons. Geol Soc Am Mem 116:83–104

    Google Scholar 

  • Steven TA, Lipman PW (1976) Calderas of the San Juan volcanic field, southwestern Colorado. US Geol Surv Prof Pap 958:1–35

    Google Scholar 

  • Swanson DA (1982) Magma supply rate at Kilauea volcano 1952–1971. Science 175:169–170

    Article  Google Scholar 

  • Thomas PJ, Squyres SW, Carr MH (1990) Flank tectonics of Martian volcanoes. J Geophys Res 95:14345–14355

    Article  Google Scholar 

  • Tibaldi A, Vezzoli L (1998) The space problem of caldera resurgence: an example from Ischia Island, Italy. Geol Rundsch 87:53–66

    Article  Google Scholar 

  • Troll VR, Emeleus CH, Donaldson CH (2000) Caldera formation in the Rum Igneous Centre, Scotland. Bull Volcanol 62:301–317

    Article  Google Scholar 

  • Usai S, Sansosti E, Lanari R, Tesauro M, Fornaro G, Berardino P, Lundgren P (2000) Deformation time series analysis and modeling surface deformation observed with SAR interferometry at Campi Flegreicaldera. EOS Trans Am Geophys Union 81:1322

    Google Scholar 

  • Walker GPL (1984) Downsag calderas, ring faults, caldera sizes, and incremental caldera growth. J Geophys Res 89:8407–8416

    Article  Google Scholar 

  • Walker GPL (1999) Volcanic rift zones and their intrusion swarms. J Volcanol Geotherm Res 94:21–34

    Article  Google Scholar 

  • Williams H (1941) Calderas and their origin. Univ Calif Berkeley Publ Geol Sci 25:239–346

    Google Scholar 

  • Williams H, McBirney A (1979) Volcanology. Freeman, Cooper and Co., San Francisco

    Google Scholar 

  • Wisser E (1927) Oxidation subsidence at Bisbee, Arizona. Econ Geol Bull 22:761–790

    Article  Google Scholar 

  • Ye S, Rihm R, Danobeitia J, Canales J, Gallart J (1999) A crustal transect through the northern and northeastern part of the volcanic edifice of Gran Canaria. J Geodyn 28:3–26

    Article  Google Scholar 

  • Yokoyama I, Ohkawa S (1986) Subsurface structure of Aira caldera and its vicinity in southern Kyushu, Japan. J Volcanol Geotherm Res 30:253–282

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas R. Walter.

Additional information

Published online: 4 May 2001

Editorial responsibility: T.H. Druitt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walter, T.R., Troll, V.R. Formation of caldera periphery faults: an experimental study. Bull Volcanol 63, 191–203 (2001). https://doi.org/10.1007/s004450100135

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004450100135

Keywords

Navigation