Skip to main content
Log in

Effects of hydrothermal unrest on stress and deformation: insights from numerical modeling and application to Vulcano Island (Italy)

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

A numerical approach is proposed to evaluate stress and deformation fields induced by hydrothermal fluid circulation and its influence on volcano-flank stability. The numerical computations have been focused on a conceptual model of Vulcano Island, where geophysical, geochemical, and seismic signals have experienced several episodes of remarkable changes likely linked to the hydrothermal activity. We design a range of numerical models of hydrothermal unrest and computed the associated deformation and stress field arising from rock-fluid interaction processes related to the thermo-poroelastic response of the medium. The effects of model parameters on deformation and flank stability are explored considering different multilayered crustal structures constrained by seismic tomography and stratigraphy investigations. Our findings highlight the significant role of model parameters on the response of the hydrothermal system and, consequently, on the amplitudes and the timescale of stress and strain fields. Even if no claim is made that the model strictly applies to the crisis episodes at Vulcano, the numerical results are in general agreement with the pattern of monitoring observations, characterized by an enhancing of gas emission and seismic activity without significant ground deformation. The conceptual model points to a pressurization and heating of the shallow hydrothermal system (1–0.25 km bsl) fed by fluid of magmatic origin. However, for the assumed values of model material and source parameters (rate of injection, fluid composition, and temperature), the pressure and temperature changes do not affect significantly the flank stability, which is mainly controlled by the gravitational force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Achilli V, Baldi P, Baratin L, Bonin C, Ercolani E, Gandolfi S, Anzidei M, Riguzzi F (1998) Digital photogrammetric survey on the island of Vulcano. Acta Vulcanol 10:1–5

    Google Scholar 

  • AGIP S.p.A (1987) Permesso Vulcano. Sintesi geomineraria finale. Int Rep 472 for AGIP-ENEL-EMS, San Donato Milanese, Milano, Italy

  • Alparone S, Cannata A, Gambino S, Gresta S, Milluzzo V, Montalto P (2010) Time-space variation of the volcano seismic events at La Fossa (Vulcano, Aeolian Islands, Italy): new insights into seismic sources in a hydrothermal system. Bull Volcanol 72:803–816

    Article  Google Scholar 

  • Apuani T, Corazzato C, Merri A, Tibaldi A (2013) Understanding Etna flank instability through numerical models. J Volc Geotherm Res 251:112–126

    Article  Google Scholar 

  • Azzaro R et al (2013) Multi-disciplinary analysis of the relationships between tectonic structures and volcanic activity (Etna, Vulcano-Lipari system). Final Report of the Agreement INGV-DPC 2012–2021, Volcanological Programme 2012–2015, https://sites.google.com/site/progettivulcanologici/progetto_v3

  • Barberi F, Gandino A, Gioncada A, La Torre P, Sbrana A, Zenucchini C (1994) The deep structure of the Eolian arc (Filicudi–Panarea–Vulcano sector) in light of gravity, magnetic and volcanological data. J Volcanol Geotherm Res 61:189–206

    Article  Google Scholar 

  • Barde-Cabusson S, Finizola A, Revil A, Ricci T, Piscitelli S, Rizzo E, Angeletti B, Balasco M, Bennati L, Byrdina S, Carzaniga N, Crespy A, Di Gangi F, Morin J, Perrone A, Rossi M, Roulleau E, Suski B, Villeneuve N (2009) New geological insights and structural control on fluid circulation in La Fossa cone (Vulcano, Aeolian Islands, Italy). J Volcanol Geotherm Res 185:231–245

    Article  Google Scholar 

  • Berrino G (2000) Combined gravimetry in the observation of volcanic processes in Italy. J Geodyn 30:371–388

    Article  Google Scholar 

  • Blanco-Montenegro I, de Ritis R, Chiappini M (2007) Imaging and modelling the subsurface structure of volcanic calderas with high-resolution aeromagnetic data at Vulcano (Aeolian Islands, Italy). Bull Volcanol 69:643–659. doi:10.1007/ s00445-006-0100-7

    Article  Google Scholar 

  • Bonaccorso A, Currenti G, Del Negro C, Boschi E (2010) Dike deflection modelling for inferring magma pressure and withdrawal, with application to Etna 2001 case. Earth Planet Sci Lett 293:121–129. doi:10.1016/j.epsl.2010.02.030

    Article  Google Scholar 

  • Bonafede M (1990) Axi-symmetric deformation of a thermo-poro-elastic halfspace: inflation of a magma chamber. Geophys J Int 103:289–299

    Article  Google Scholar 

  • Bonafede M (1991) Hot fluid migration: an efficient source of ground deformation: application to the 1982– 1985 crisis at Campi Flerei, Italy. J Volcanol Geotherm Res 48:187–198

    Article  Google Scholar 

  • Brooks A, Corey AT (1964) Hydraulic properties of porous media. Colorado State 599 University Hydrology. Paper No. 3, Fort Collins, Colorado, USA

  • Cannata A, Diliberto S, Alparone S, Gambino S, Gresta S, Liotta M, Madonia P, Milluzzo V, Aliotta M, Montalto P (2011) Multiparametric approach in investigating volcano hydrothermal systems: the case study of Vulcano (Aeolian Islands, Italy). Pure Appl Geophys 169:167–182

    Article  Google Scholar 

  • Cattin R, Doubre C, de Chabalier JB, King G, Vigny C, Avouac JP, Ruegg JC (2005) Numerical modelling of quaternary deformation and post-rifting displacement in the Asal–Ghoubbet rift (Djibouti, Africa). Earth Planet Sci Lett 239:352–367

    Article  Google Scholar 

  • Chen WF (1982) Plasticity in reinforced concrete. McGraw-Hill, New York

    Google Scholar 

  • Chiarabba C, Pino NA, Ventura G, Vilardo G (2004) Structural features of the shallow plumbing system of Vulcano Island Italy. Bull Volcanol 66:477–484

    Article  Google Scholar 

  • Chiodini G, Cioni R, Falsaperla S, Guidi M, Marini L, Montalto A (1992) Geochemical and seismological investigations at Vulcano (Aeolian islands) during 1978–1989. J Geophys Res 97:11025–11032

    Article  Google Scholar 

  • Chiodini G, Frondini F, Raco B (1996) Diffuse emission of CO2 from the Fossa crater, Vulcano Island (Italy). Bull Volcanol 58:41–50

    Article  Google Scholar 

  • Cianetti S, Giunchi C, Casarotti E (2012) Volcanic deformation and flank instability due to magmatic sources and frictional rheology: the case of Mount Etna. Geophys J Int. doi:10.1111/j.1365-246X.2012.05689.x

    Google Scholar 

  • Coco A, Currenti G, Del Negro C, Russo G (2014) A second order finite-difference ghost-point method for elasticity problems on unbounded domains with applications to volcanology. Commun Comput Phys 16:983–1009. doi:10.4208/cicp.210713.010414

    Article  Google Scholar 

  • Coco A, Gottsmann J, Whitaker F, Rust A, Currenti G, Jasim A, Bunney S (2016) Numerical models for ground deformation and gravity changes during volcanic unrest: simulating the hydrothermal system dynamics of a restless caldera. Solid Earth 7:557–577. doi:10.5194/se-7-557-2016

    Article  Google Scholar 

  • Comsol Multiphysics 4.3 (2012) Comsol Ab, 1356 pp, Stockholm, Sweden

  • Currenti G (2014) Numerical evidences enabling to reconcile gravity and height changes in volcanic areas. Geophys J Int. doi:10.1093/Gji/Ggt507

    Google Scholar 

  • Currenti G, Williams CA (2014) Numerical modeling of deformation and stress fields around a magma chamber: constraints on failure conditions and rheology. Phys Earth Planet Int 226:14–27. doi:10.1016/j.pepi.2013.11.003

    Article  Google Scholar 

  • De Astis G, Ventura G, Vilardo G (2003) Geodynamic significance of the Aeolian volcanism (southern Tyrrhenian Sea, Italy) in light of structural, seismological and geochemical data. Tectonics 22:4. doi:10.1029/2003TC001506

    Article  Google Scholar 

  • De Astis G, Lucchi F, Dellino P, La Volpe L, Tranne CA, Frezzotti ML, Peccerillo A (2013) Geology, volcanic history and petrology of Vulcano (central Aeolian archipelago). Geol Soc Lond Mem 37:281–349. doi:10.1144/M37.11

    Article  Google Scholar 

  • De Natale G, Pingue F, Allard P, Zollo A (1991) Geophysical and geochemical modelling of the 1982–1984 unrest phenomena at Campi Flegrei caldera (southern Italy). J Volcanol Geotherm Res 48:199–222

    Article  Google Scholar 

  • De Natale G, Troise C, Pingue F (2001) A mechanical fluid-dynamical model for ground movements at Campi Flegrei caldera. J Geodyn 32:487–517. doi:10.1016/S0264-3707(01)00045-X

    Article  Google Scholar 

  • De Ritis R, Blanco-Montenegro I, Ventura G, Chiappini M (2005) Aeromagnetic data provide new insights on the tectonics and volcanism of Vulcano island and offshore areas (southern Tyrrhenian Sea, Italy). Geophys Res Lett 32 (L15305). doi 10.1029/2005GL023465

  • Diliberto IS, Gurrieri S, Valenza M (2002) Relationships between diffuse CO2 emissions and volcanic activity on the island of Vulcano (Aeolian Islands, Italy) during the period 1984–1994. Bull Volcanol 64:219–228

    Article  Google Scholar 

  • Elsworth D, Day S (1999) Flank collapse triggered by intrusion: the Canarian and Cape Verde Archipelagoes. J Volcanol Geoth Res 94(1–4):323–340

    Article  Google Scholar 

  • Elsworth D, Voigth B (1996) Evaluation of volcano flank instability triggered by dyke intrusion. In: MCGuire, W. J. Jones, A.P. & Neuberg J (eds). Volcano instability on the Earth and Other Planets. Special Publications of the Geological Society of London, 110: 45–54

  • Faraone D, Silvano A, Verdiani G (1986) The monzogabbroic intrusion in the island of Vulcano, Aeolian archipelago, Italy. Bull Volcanol 48:299–307

    Article  Google Scholar 

  • Federico C, Capasso G, Paonita A, Favara R (2010) Effects of steam-heating processes on a stratified volcanic aquifer: stable isotopes and dissolved gases in thermal waters of Vulcano Island (Aeolian archipelago). J Volcanol Geotherm Res 192:178–190. doi:10.1016/j.jvolgeores.2010.02.020

    Article  Google Scholar 

  • Fung Y (1965) Foundations of solid mechanics. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Gioncada A, Sbrana A (1991) “La Fossa caldera”, Vulcano: inferences from deep drillings. Acta Vulcanol 1:115–125

    Google Scholar 

  • Got JL, Peltier A, Staudacher T, Kowalski P, An Boissier P (2013) Edifice strength and magma transfer modulation at Piton de la Fournaise volcano. J Geophys Res Solid Earth 118. doi:10.1002/jgrb.50350

  • Granieri D, Carapezza ML, Chiodini G, Avino R, Caliro S, Ranaldi M, Ricci T, Tarchini L (2006) Correlated increase in CO2 fumarolic content and diffuse emission from La Fossa crater (Vulcano, Italy): evidence of volcanic unrest or increasing gas release from a stationary deep magma body? Geophys Res Lett 33:L13316. doi:10.1029/2006GL026460

    Article  Google Scholar 

  • Hayba D, Ingebritsen S (1994) Multiphase groundwater flow near cooling plutons. Jl Geophys Res 102:12,235–12,252

    Article  Google Scholar 

  • Hurwitz S, Christiansen LB, Hsieh PA (2007) Hydrothermal fluid flow and deformation in large calderas: inferences from numerical simulations. J Geophys Res 112:B02206. doi:10.1029/2006JB004689

    Article  Google Scholar 

  • Hutnak M, Hurwitz S, Ingebritsen SE, Hsieh PA (2009) Numerical models of caldera deformation: effects of multiphase and multicomponent hydrothermal fluid flow. J Geophys Res 114:B04411. doi:10.1029/2008JB006151

    Article  Google Scholar 

  • Iacobucci F, Incoronato A, Rapolla A, Scarascia S (1977) Basement structural trends in the volcanic islands of Vulcano, Lipari, and Salina (Aeolian Islands, Southern Tyrrhenian Sea) computed by aeromagnetic and gravimetric data. Boll Geofis Teor Appl 20(73–74):49–61

    Google Scholar 

  • Inguaggiato S, Mazot A, Diliberto IS, Inguaggiato C, Madonia P, Rouwet D, Vita F (2012) Total CO2 output from Vulcano island (Aeolian Islands, Italy). Geochem Geophys Geosyst 13:Q02012. doi:10.1029/2011GC003920

    Article  Google Scholar 

  • Iverson RM (1995) Can magma-injection and groundwater forces cause massive landslides on Hawaiian volcanoes? JVolcanol Geother Res 66:295–308

    Article  Google Scholar 

  • Iverson RM, Reid ME (1992) Gravity driven groundwater flow and slope failure potential: 1: elastic effective-stress model. Water Resour Res 28:925–938

    Article  Google Scholar 

  • Jaeger J, Cook N, Zimmerman R (2007) Fundamentals of rock mechanics, 4th edn. Blackwell Publishing, Oxford

    Google Scholar 

  • Kearey P, Brooks M (1991) An introduction to geophysical exploration, Second edn. Blackwell Scientific Publications, Oxford, 254 pp

    Google Scholar 

  • Liu L, Zoback MD (1992) The effect of topography on the state of stress in the crust: application to the site of the Cajon Pass Scientific Drilling Project. J Geophys Res 97(B4):5095–5108. doi:10.1029/91JB01355

    Article  Google Scholar 

  • Liu HY, Kou SQ, Lindqvist PA, Tang CA (2004) Numerical studies on the failure process and associated microseismicity in rock under triaxial compression. Tectonophysics 384:149–174

    Article  Google Scholar 

  • Martí J, Geyer A (2009) Central vs flank eruptions at Teide–Pico Viejo twin stratovolcanoes (Tenerife, Canary Islands). J Volcanol Geotherm Res 181:47–60

    Article  Google Scholar 

  • Mazzini A, Nermoen A, Krotkiewski M, Podladchikov Y, Planke S, Svensen H (2009) Strike-slip faulting as a trigger mechanism for overpressure release through piercement structures. Implications for the Lusi mud volcano. Indonesia, Marine and Petroleum Geology. doi:10.1016/j.marpetgeo.2009.03.001

    Google Scholar 

  • McGuire WJ (1996) Volcano instability: a review of contemporary themes. Geol Soc London Spec Pub 110:1–23

    Article  Google Scholar 

  • Muller JR, Ito G, Martel SJ (2001) Effects of volcano loading on dike propagation in an eastic half-space. J Geophys Res 106(B6):11101–11113

    Article  Google Scholar 

  • Napoli R, Currenti G (2016) Reconstructing the Vulcano Island evolution from 3D modeling of magnetic signatures. J Volcanol Geother Res 320:40–49. doi:10.1016/j.jvolgeores.2016.04.011

    Article  Google Scholar 

  • Okubo A, Kanda W (2010) Numerical simulation of piezomagnetic changes associated with hydrothermal pressurization. Geophys J Int 181:1343–1361

    Google Scholar 

  • Orsi G, Petrazzuoli SM, Wohletz K (1999) Mechanical and thermo-fluid behaviour during unrest at the Campi Flegri caldera (Italy). J Volcanol Geotherm Res 91:453–470. doi:10.1016/S0377-0273(99) 00051-7

    Article  Google Scholar 

  • Pan E, Amadei B, Savage WZ (1995) Gravitational and tectonic stresses in anisotropic rock with irregular topography. Int J Rock Mech Min Sci Geomech Abstr 32(3):201–214

    Article  Google Scholar 

  • Paonita A, Federico C, Bonfanti P, Capasso G, Inguaggiato S, Italiano F, Madonia P, Pecoraino G, Sortino F (2013) The episodic and abrupt geochemical changes at La Fossa fumaroles (Vulcano Island, Italy) and related constraints on the dynamics, structure, and compositions of the magmatic system. Geochim Cosmochim Acta 120:158–178. doi:10.1016/j.gca.2013.06.015

    Article  Google Scholar 

  • Pinel V, Jaupart C (2004) Magma storage and horizontal dyke injection beneath a volcanic edifice. Earth Planet Sci Lett 221:245–262

    Article  Google Scholar 

  • Pruess K, Oldenburg C, Moridis G (1999) TOUGH2 User’s Guide, Version 2.0, Lawrence Berkeley Natl Lab, Berkeley, Ca, Usa

  • Ranalli G (1995) Rheology of the earth. Chapman and Hall, London, p 413

    Google Scholar 

  • Rasà R, Villari L (1991) Geomorphological and morpho-structural investigations on the Fossa cone (Vulcano, Aeolian Islands):a first outline. Acta Vulcanol 1:127–133

    Google Scholar 

  • Reid ME (2004) Massive collapse of volcano edifices triggered by hydrothermal pressurization. Geology 32:373–376

    Article  Google Scholar 

  • Revil A, Finizola A, Piscitelli S, Rizzo E, Ricci T, Crespy A, Angeletti B, Balasco M, Barde Cabusson S, Bennati L, Boleve A, Byrdina S, Carzaniga N, Di Gangi F, Morin J, Perrone A, Rossi M, Roulleau E, Suski B (2008) Inner structure of La Fossa di Vulcano (Vulcano Island, southern Tyrrhenian Sea, Italy) revealed by high-resolution electric resistivity tomography coupled with selfpotential, temperature, and CO2 diffuse degassing measurements. J Geophys Res 113:B07207–1 21. doi:10.1029/2007JB005394

    Google Scholar 

  • Rinaldi A, Todesco M, Bonafede M (2010) Hydrothermal instability and ground displacement at the Campi Flegrei caldera. Phys Earth Planet Inter 178:155–161

    Article  Google Scholar 

  • Rinaldi A, Todesco Bonafede M, Vandemeulebrouck MJ, Revil A (2011) Electrical conductivity, ground displacement, gravity changes, and gas flow at Solfatara crater (Campi Flegrei caldera, Italy): results from numerical modeling. J VolcanolGeother Res 207:93–105

    Google Scholar 

  • Roeloffs EA (1988) Fault stability changes induced beneath a reservoir with cyclic variations in water level. J Geophys Res 93(B3):2107–2124

    Article  Google Scholar 

  • Romagnoli C, Casalbore D, Bosman A, Braga R, Chiocci FL (2013) Submarine structure of Vulcano volcano (Aeolian Islands) revealed by high-resolution bathymetry and seismo-acoustic data. Mar Geol 338:30–45. doi:10.1016/j.margeo.2012.12.002

    Article  Google Scholar 

  • Rutqvist J, Wu YS, Tsang CF, Bodvarsson GA (2002) Modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. Int J Rock Mech Min Sci 39:429–442

    Article  Google Scholar 

  • Schöpa A, Pantaleo M, Walter TR (2011) Scale-dependent location of hydrothermal vents: stress field models and infrared field observations on the Fossa Cone, Vulcano Island, Italy. J Volcanol Geotherml Res 203:133–145

    Article  Google Scholar 

  • Tinti S, Bortolucci E, Armigliato A (1999) Numerical simulation of the landslide-induced tsunami of 1988 on Vulcano Island, Italy. Bull Volcanol 61:121–137

    Article  Google Scholar 

  • Todesco M (1997) Origin of fumarolic fluids at Vulcano (Italy). Insights from isotope data and numerical modeling of hydrothermal circulation. J Volcanol Geotherm Res 79:63–85. doi:10.1016/S0377-0273(97)00019-X

    Article  Google Scholar 

  • Todesco M, Chiodini G, Macedonio G (2003) Monitoring and modelling hydrothermal fluid emission at La Solfatara (Phlegrean Fields, Italy). An interdisciplinary approach to the study of diffuse degassing. J Volcanol Geotherm Res 125:57–79. doi:10.1016/S0377-0273(03)00089-1

    Article  Google Scholar 

  • Todesco M, Rinaldi AP, Bonafede M (2010) Modeling of unrest signals in heterogeneous hydrothermal systems. J Geophys Res 115:B09213. doi:10.1029/2010JB007474

    Article  Google Scholar 

  • Tommasi P, Rotonda T, Verrucci L, Graziani A, Bolidini D (2016) Geotechnical analysis of instability phenomena at active colcanoes: two cases histories in Italy in Landslides and Engineered slopes. Experience, theory and Practices, ed. Aversa et al Associazione Geotecnica Italiana, Rome, Italy

  • Troiano A, Di Giuseppe M, Petrillo Z, Troise C, De Natale G (2011) Ground deformation at calderas driven by fluid injection: modelling unrest episodes at Campi Flegrei (Italy). Geophys J Int 187:833–847

    Article  Google Scholar 

  • Ventura G, Vilardo G, Milano G, Pino NA (1999) Relationships among crustal structure, volcanism and strike-slip tectonics in the Lipari-Vulcano volcanic complex (Aeolian Islands, Southern Tyrrhenian Sea, Italy). Physics Earth Planet Int 116:31–52

    Article  Google Scholar 

  • Voight B, Elsworth D (1997) Failure of volcano slopes. Geotechnique 47:1–31

    Article  Google Scholar 

  • Voight B, Glicken H, Janda RJ, Douglas PM (1981) Catastrophic rockslide avalanche of May 18. In: Lipman PW, Mullineux DR (eds) The 1980 eruption of Mount St. Helens. U.S. Geol. Survey Prof. Paper, 1250, 347–377

  • Zang A, Stephansson O (2010) Stress field of the Earth’s crust. Springer, Berlin

    Book  Google Scholar 

  • Zienkiewicz OC, Emson C, Bettess P (1983) A novel boundary infinite element. Int J Numer Methods Eng 19:393–404

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Editor L. Capra, A. Geyer, and an anonymous referee for their constructive reviews. The work of A. Coco was supported in part by the Santander Research Scholarship Award Scheme 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilda Currenti.

Additional information

Editorial responsibility: L. Capra

Electronic supplementary material

ESM 1

(DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Currenti, G., Napoli, R., Coco, A. et al. Effects of hydrothermal unrest on stress and deformation: insights from numerical modeling and application to Vulcano Island (Italy). Bull Volcanol 79, 28 (2017). https://doi.org/10.1007/s00445-017-1110-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-017-1110-3

Keywords

Navigation