Skip to main content
Log in

Diverse dynamics of Holocene mafic-intermediate Plinian eruptions at Mt. Taranaki (Egmont), New Zealand

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Over the last 5000 years, at least 53 eruptive episodes have occurred at Mt. Taranaki (western North Island, New Zealand), from either its summit crater (~ 2500 m) or a satellite vent on Fanthams Peak (~ 1900 m). The magmas erupted have a wide range of compositions from basaltic to trachy-andesitic (~ 48–60 wt% SiO2). Five large-magnitude episodes from this sequence were studied so as to characterize a typical range of explosive eruption styles at andesitic stratovolcanoes, including three eruptions from the summit crater and two from Fanthams Peak. Sustained eruption columns characterized the climactic phase of all five eruptions, but these were interspersed with pulsating, collapsing, or oscillating conditions. Eruption columns reached between 14 to 29 km in height and ejected minimum volumes of 0.1–1.1 km3 at mass discharge rates of 1 × 107–2 × 108 kg/s, indicating magnitudes of 4.1 to 5.1. The simplest eruptions occurred from Fanthams Peak with basaltic magmas producing high-climactic eruption columns rapidly after vent opening, followed by gentle waning phases or a passage into a lava-fountaining phase. Eruptions of higher-silica magmas at the summit vent, by contrast, showed longer pre-climactic eruptive phases with either dome growth or complex phases of vent clearance and blockage producing unsteady eruption columns. The latter eruption types produced block-and-ash flows, lateral-blast surges, and column-collapse pumice-and-ash flows, with run-out distances of 3–19 km, covering 5–70 km2 with volumes of up to 0.022 km3. Our results demonstrate that very different eruption scenarios may occur at different vent locations, or with subtly different compositions erupted, on the same stratovolcano so that emergency management planning must take such a range of possibilities into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alidibirov M, Dingwell DB (1996) Magma fragmentation by rapid decompression. Nature 380:146–149

    Article  Google Scholar 

  • Alloway B, Neall VE, Vucetich CG (1995) Late Quaternary (post 28,000 years B.P.) tephrostratigraphy of northeast and central Taranaki, New Zealand. J Royal Soc NZ 25:385–458

    Article  Google Scholar 

  • Andronico D, Cioni R (2002) Contrasting styles of Mount Vesuvius activity in the period between the Avellino and Pompeii Plinian eruptions, and some implications for assessment of future hazards. Bull Volcanol 64(6):372–391

    Article  Google Scholar 

  • Arce JL, Cervantes KE, Macías JL, Mora JC (2005) The 12.1 ka Middle Toluca Pumice: A dacitic Plinian–subplinian eruption of Nevado de Toluca in Central Mexico. J Volcanol Geotherm Res 147:125–143

    Article  Google Scholar 

  • Arce JL, Macías JL, Gardner JE, Rangel E (2012) Reconstruction of the Sibinal Pumice, an andesitic Plinian eruption at Tacaná Volcanic Complex, Mexico–Guatemala. J Volcanol Geotherm Res 217:39–55

    Article  Google Scholar 

  • Avellan DR, Macías JL, Sosa-Ceballos G, Velasquez G (2014) Stratigraphy, chemistry, and eruptive dynamics of the 12.4 ka plinian eruption of Apoyeque volcano, Managua, Nicaragua. Bull Volcanol 76:792

    Article  Google Scholar 

  • Bonadonna C, Costa A (2012) Estimating the volume of tephra deposits: a new simple strategy. Geology G32769–1

  • Bonadonna C, Costa A (2013) Plume height, volume, and classification of explosive volcanic eruptions based on the Weibull function. Bull Volcanol 75(8):1–19

    Article  Google Scholar 

  • Bonadonna C, Houghton BF (2005) Total grain-size distribution and volume of tephra-fall deposits. Bull Volcanol 67:441–456

    Article  Google Scholar 

  • Bonadonna C, Cioni R, Costa A et al (2016) MeMoVolc report on classification and dynamics of volcanic explosive eruptions. Bull Volcanol 78:84

    Article  Google Scholar 

  • Bourdier JL, Pratomo I, Thouret JC et al (1997) Observations, stratigraphy and eruptive processes of the 1990 eruption of Kelut volcano, Indonesia. J Volcanol Geoth Res 79:181–203

    Article  Google Scholar 

  • Capra L, Carreras LM, Arce JL, Macías JL (2006) The Lower Toluca Pumice: A ca. 21,700 yr BP Plinian eruption of Nevado de Toluca volcano, México. Geol Soc of America Special Papers 402:155–173

    Google Scholar 

  • Carazzo G, Tait S, Kaminski E, Gardner JE (2012) The recent Plinian explosive activity of Mt. Pelée volcano (Lesser Antilles): The P1 AD 1300 eruption. Bull Volcanol 74:2187–2203

    Article  Google Scholar 

  • Carey S, Bursik M (2000) Volcanic plumes. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 527–544

    Google Scholar 

  • Carey S, Sirgudsson H (1989) The intensity of Plinian eruptions. Bull Volcanol 51:28–40

    Article  Google Scholar 

  • Carey S, Sparks RSJ (1986) Quantitative models of the fall and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125

    Article  Google Scholar 

  • Cas R, Porritt L, Pittari A, Hayman P (2008) A new approach to kimberlite facies terminology using a revised general approach to the nomenclature of all volcanic rocks and deposits: descriptive to genetic. J Volcanol Geotherm Res 174:226–240

    Article  Google Scholar 

  • Cashman KV, Sturtevant B, Papale P, Navon O (2000) Magmatic fragmentation. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 421–430

    Google Scholar 

  • Cioni R, Marianelli P, Stantacroce R, Sbrana A (2000) Plinian and subplinian eruptions. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of Volcanoes. Academic Press, San Diego, pp 477–494

    Google Scholar 

  • Cioni R, Sulpizio R, Garruccio N (2003) Variability of the eruption dynamics during a Subplinian event: Greenish Pumice eruption of Somma-Vesuvius (Italy). J Volcanol Geotherm Res 124:89–114

    Article  Google Scholar 

  • Cioni R, Bertagnini A, Santacroce R, Andronico D (2008) Explosive activity and eruption scenarios at Somma-Vesuvius (Italy): Towards a new classification scheme. J Volcanol Geotherm Res 178:331–346

    Article  Google Scholar 

  • Cole JW, Stephenson TM (1972) Calculation of the volume of a tephra deposit. In: Cole JW (Ed) Distribution of high alumina basalts in the Taupo Volcanic Zone. Geology Department. Victoria University of Wellington 1:13–15

    Google Scholar 

  • Coltelli M, Del Carlo P, Vezzoli L (1998) Discovery of a Plinian basaltic eruption of Roman age at Etna volcano, Italy. Geol 26(12):1095–1098

    Article  Google Scholar 

  • Cronin SJ, Lube G, Dayudi DS et al (2013) Insights into the October-November 2010 Gunung Merapi eruption (Central Java, Indonesia) from the stratigraphy, volume and characteristics of its pyroclastic deposits. J Volcanol Geoth Res 261:244–259

    Article  Google Scholar 

  • Daggitt ML, Mather TA, Pyle DM, Page S (2014) AshCalc–a new tool for the comparison of the exponential, power-law and Weibull models of tephra deposition. J Appl Volcanol 3(1):7

    Article  Google Scholar 

  • Damaschke M, Cronin SJ, Holt K, Bebbington M, Hogg A (2017a) A 30,000-year high-precision eruption history for the andesitic Mt Taranaki, North Island, New Zealand. Quaternary Res, 1–23. https://doi.org/10.1017/qua.2016.11

  • Damaschke M, Cronin SJ, Torres-Orozco R, Wallace RC (2017b) Unifying tephrostratigraphic approaches to redefine major Holocene marker tephras, Mt. Taranaki, New Zealand. J Volcanol Geoth Res 337:29–43. https://doi.org/10.1016/j.jvolgeores.2017.02.021

    Article  Google Scholar 

  • Druce AP (1966) Tree-ring dating of recent volcanic ash and lapilli, Mt Egmont. NZ J Botany 4:3–41

    Article  Google Scholar 

  • Eychenne J, Le Pennec J-L, Ramón P, Yepes H (2013) Dynamics of explosive paroxysms at open-vent andesitic systems: High-resolution mass distribution analyses of the 2006 Tungurahua fall deposit (Ecuador). Earth Planet Sci Lett 361:343–355

    Article  Google Scholar 

  • Fierstein J, Nathenson M (1992) Another look at the calculation of fallout tephra volumes. Bull Volcanol 54:156–167

    Article  Google Scholar 

  • Fisher R, Schmincke HU (1984) Pyroclastic Rocks. Springer-Verlag, Berlin 472 pp

    Book  Google Scholar 

  • Folk RL, Ward WC (1957) Brazos River bar: a study in the significance of grain size parameters. J Sedimentary Res 27(1)

  • Franks AM (1984) Soils of Eltham County and the tephrochronology of central Taranaki. Dissertation, Massey University, Palmerston North, New Zealand

  • Gardner JE, Thomas RME, Jaupart C, Tait S (1996) Fragmentation of magma during Plinian volcanic eruptions. Bull Volcanol 58(2–3):144–162

    Article  Google Scholar 

  • Harvey PK, Taylor DM, Hendry RD, Bancroft F (1973) An accurate fusion method for the analysis of rocks and chemically related materials by X-ray fluorescence spectrometry. X-Ray Spectrom 2:33–34

    Article  Google Scholar 

  • Henrys S, Reyners M, Bibby H (2003) Exploring the plate boundary structure of North Island, New Zealand. EOS, Trans Am. Geophys Union 84:289–294

    Article  Google Scholar 

  • Houghton BF, Wilson CJN (1989) Vesicularity index for pyroclastic deposits. Bull Volcanol 51:451–462

    Article  Google Scholar 

  • Houghton BF, Wilson CJN, Del Carlo P et al (2004) The influence of conduit processes on changes in style of basaltic Plinian eruptions: Tarawera 1886 and Etna 122 BC. J Volcanol Geoth Res 137:1–14

    Article  Google Scholar 

  • Inman DL (1952) Measures for describing the size distribution of sediments. J Sedimentary Res 22(3)

  • Irvine TNJ, Baragar WRAF (1971) A guide to the chemical classification of the common volcanic rocks. Canadian J of Earth Sciences 8(5):523–548

    Article  Google Scholar 

  • King PR, Thrasher GP (1996) Cretaceous-Cenozoic geology and petroleum systems of the Taranaki Basin, New Zealand. Institute of Geological and Nuclear Sciences Monograph 13

  • Klawonn M, Houghton BF, Swanson DA et al (2014) From field data to volumes: constraining uncertainties in pyroclastic eruption parameters. Bull Volcanol 76(7):1–16

    Article  Google Scholar 

  • Klug C, Cashman KV (1994) Vesiculation of May 18, 1980. Mount St. Helens magma. Geology 22:468–472

    Article  Google Scholar 

  • Klug C, Cashman KV (1996) Permeability development in vesiculating magmas: implications for fragmentation. Bull Volcanol 58:87–100

    Article  Google Scholar 

  • Klug C, Cashman KV, Bacon CR (2002) Structure and physical characteristics of pumice from the climactic eruption of Mt Mazama (Crater Lake), Oregon. Bull Volcanol 64:486–501

    Article  Google Scholar 

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrology 27(3):745–750

    Article  Google Scholar 

  • Legros F (2000) Minimum volume of a tephra fallout deposit estimated from a single isopach. J Volcanol Geotherm Res 96:25–32

    Article  Google Scholar 

  • Macias JL, Sheridan MF, Espindola JM (1997) Reappraisal of the 1982 eruptions of El Chichón Volcano, Chiapas, Mexico: new data from proximal deposits. Bull Volcanol 58:459–471

    Article  Google Scholar 

  • Mader HM (1998) Conduit flow and fragmentation. In: JS Gilbert and RSJ Sparks (Eds) The physics of explosive volcanic eruptions. Geol Soc Lon Spec Publ 145:51–71

    Article  Google Scholar 

  • Manville V, Németh K, Kano K (2009) From source to sink: a review of three decades of progress in the understanding of volcaniclastic processes, deposits, and hazards. Sediment Geol 220:136–161

    Article  Google Scholar 

  • May DJ (2003) The correlation of recent tephra with lava flows on Egmont volcano, Taranaki, New Zealand using evidence of mineral chemistry. Dissertation, University of Auckland, Auckland, New Zealand

  • Neall VE (1972) Tephrochronology and tephrostratigraphy of western Taranaki (N108-109), New Zealand. NZ J Geol Geoph 15:507–557

    Article  Google Scholar 

  • Neall VE (1979) Sheets P19, P20, and P21. New Plymouth, Egmont and Manaia. 1st ed. Geological map of New Zealand 1:50,000. 3 maps and notes. NZ Dept of Scientific and Industrial Res, Wellington

  • Neall VE (2003) The volcanic history of Taranaki. Institute of Natural Resources, Massey University, Soil & Earth Sciences Occasional Publication 2

  • Neall VE, Stewart RB, Smith IEM (1986) History and petrology of the Taranaki volcanoes. In: Smith IEM (ed) Late Cenozoic volcanism. Royal Society of New Zealand Bulletin 23:251–263

  • Pardo N, Cronin SJ, Palmer A et al (2012) Andesitic Plinian eruptions at Mt. Ruapehu: quantifying the uppermost limits of eruptive parameters. Bull Volcanol 74:1161–1185

    Article  Google Scholar 

  • Pardo N, Cronin SJ, Wright HMN et al (2014) Pyroclastic textural variation as an indicator of eruption column steadiness in andesitic Plinian eruptions at Mt. Ruapehu. Bull Volcanol 76:822

    Article  Google Scholar 

  • Platz T, Cronin SJ, Cashman KV et al (2007) Transitions from effusive to explosive phases in andesite eruptions-A case-study from the AD 1655 eruption of Mt. Taranaki, New Zealand. J Volcanol Geoth Res 161:15–34

    Article  Google Scholar 

  • Platz T, Cronin SJ, Procter JN et al (2012) Non-explosive dome-forming eruptions at Mt. Taranaki, New Zealand. Geomorphology 136:15–30

    Article  Google Scholar 

  • Procter JN, Cronin SJ, Platz T et al (2010) Mapping block-and-ash flow hazards based on Titan 2D simulations: a case study from Mt. Taranaki, NZ. Nat Hazards 53:483–501

    Article  Google Scholar 

  • Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51:1–15

    Article  Google Scholar 

  • Pyle DM (1995) Assessment of the minimum volume of tephra fall deposits. J Volcanol Geotherm Res 69(3):379–382

    Article  Google Scholar 

  • Pyle DM (2000) Sizes of volcanic eruptions. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 263–269

    Google Scholar 

  • Sable JE, Houghton BF, Wilson CJN, Carey RJ (2006) Complex proximal sedimentation from Plinian plumes: the example of Tarawera 1886. Bull Volcanol 69:89–103

    Article  Google Scholar 

  • Saucedo R, Macías JL, Gavilanes JC, Arce JL et al (2010) Eyewitness, stratigraphy, chemistry, and eruptive dynamics of the 1913 Plinian eruption of Volcán de Colima, México. J Volcanol Geoth Res 191:149–166

    Article  Google Scholar 

  • Shea T, Gurioli L, Houghton BF et al (2011) Column collapse and generation of pyroclastic density currents during the AD 79 eruption of Vesuvius: the role of pyroclast density. Geology 39(7):695–698

    Article  Google Scholar 

  • Shea T, Gurioli L, Houghton BF (2012) Transitions between fall phases and pyroclastic density currents during the AD 79 eruption at Vesuvius: building a transient conduit model from the textural and volatile record. Bull Volcanol 74(10):2363–2381

    Article  Google Scholar 

  • Sherburn S, White RS (2006) Tectonics of the Taranaki region, New Zealand: earthquake focal mechanisms and stress axes. NZ J Geol and Geoph 49:269–279

    Article  Google Scholar 

  • Sparks RSJ (1986) The dimension and dynamics of volcanic eruption columns. Bull Volcanol 48:13–15

    Article  Google Scholar 

  • Stagpoole V, Nicol A (2008) Regional structure and kinematic history of a large subduction back thrust: Taranaki Fault, New Zealand. J Geoph Res: Solid Earth 113(B1)

  • Statistics New Zealand (2013) 2013 Census: Taranaki Region. http://www.stats.govt.nz/. Accessed 1 Jan 2017

  • Stewart RB, Price RC, Smith IEM (1996) Evolution of high-K arc magma, Egmont volcano, Taranaki, New Zealand: evidence from mineral chemistry. J Volcanol Geoth Res 74:275–295

    Article  Google Scholar 

  • Sulpizio R (2005) Three empirical methods for the calculation of distal volume of tephra-fall deposits. J Volcanol Geotherm Res 145(3–4):315–333

    Article  Google Scholar 

  • Sulpizio R, Dellino P, Doronzo DM, Sarocchi D (2014) Pyroclastic density currents: state of the art and perspectives. J Volcanol Geotherm Res 283:36–65

  • Topping WW (1971) Burrell Lapilli eruptives, Mount Egmont, New Zealand. NZ J Geol Geoph 15:476–490

    Article  Google Scholar 

  • Torres-Orozco R, Cronin SJ, Pardo N, Palmer AS (2017) New insights into Holocene eruption episodes from proximal deposit sequences at Mt. Taranaki (Egmont). New Zealand Bull Volcanol 79(3):1–25. https://doi.org/10.1007/s00445-016-1085-5

    Google Scholar 

  • Turner MB (2008) Eruption cycles and magmatic processes at a reawakening volcano, Taranaki, New Zealand. Dissertation, Massey University, Palmerston North, New Zealand

  • Turner MB, Cronin SJ, Bebbington MS, Platz T (2008a) Developing probabilistic eruption forecasts for dormant volcanoes: a case study from Mt Taranaki, New Zealand. Bull Volcanol 70:507–515

    Article  Google Scholar 

  • Turner MB, Cronin SJ, Smith IEM et al (2008b) Eruption episodes and magma recharge events in andesitic systems, Mt Taranaki, New Zealand. J Volcanol Geoth Res 177:1063–1076

    Article  Google Scholar 

  • Turner MB, Cronin SJ, Stewart RB, Bebbington M, Smith IEM (2008c) Using titanomagnetite textures to elucidate volcanic eruption histories. Geology 36:31–34

    Article  Google Scholar 

  • Turner MB, Bebbington MS, Cronin SJ, Stewart RB (2009) Merging eruption datasets: building an integrated Holocene eruptive record for Mt. Taranaki, New Zealand. Bull Volcanol 71:903–918

    Article  Google Scholar 

  • Turner MB, Cronin SJ, Bebbington MS et al (2011a) Integrating records of explosive and effusive activity from proximal and distal sequences: Mt. Taranaki, New Zealand. Quaternary Intl 246:364–373

    Article  Google Scholar 

  • Turner MB, Cronin SJ, Bebbington MS et al (2011b) Relating magma composition to eruption variability at andesitic volcanoes: A case study from Mount Taranaki, New Zealand. GSA Bull 123(9/10):2005–2015

    Article  Google Scholar 

  • Villemant B, Boudon G, Komorowski JC (1996) U-series disequilibrium in arc magmas induced by water-magma interaction. Earth Planet Sci Lett 140:259–267

    Article  Google Scholar 

  • Walker GPL (1971) Grain-size characteristics of pyroclastic deposits. J Geol 79:696–714

    Article  Google Scholar 

  • Walker GPL (1973) Explosive Volcanic Eruptions -A new Classification Scheme. Geologische Rundshau 62:431–446

    Article  Google Scholar 

  • White JDL, Houghton BF (2006) Primary volcaniclastic rocks. Geology 34:677–680

    Article  Google Scholar 

  • Whitehead SJ (1976) Granulometric studies on selected tephra eruptions, North Island, New Zealand. Dissertation, Massey University, Palmerston North, New Zealand

  • Wilson L (1976) Explosive volcanic eruptions III. Plinian eruption columns. Geophys J Res Astron Soc 45:543–556

    Article  Google Scholar 

  • Wilson SA (1997) The collection, preparation and testing of USGS reference material BCR-2, Columbia River Basalt. US Geological Survey, Open-File Report 98-00x

  • Wilson L, Walker GPL (1987) Explosive volcanic eruptions VI. Ejecta dispersal in plinian eruptions: the control of eruption conditions and atmospheric properties. Geophys J Res Astron Soc 89:657–679

    Article  Google Scholar 

  • Yang Q, Bursik M (2016) A new interpolation method to model thickness, isopachs, extent, and volume of tephra fall deposits. Bull Volcanol 78(10):68

    Article  Google Scholar 

  • Zernack AV, Cronin SJ, Neall VE, Procter JN (2011) A medial to distal volcaniclastic record of an andesite stratovolcano: Detailed stratigraphy of the ring-plain succession of south-west Taranaki, New Zealand. Intl J Earth Scs 100:1936–1966

    Google Scholar 

  • Zernack AV, Price RC, Smith IEM, Cronin SJ, Stewart RB (2012) Temporal Evolution of a High-K Andesitic Magmatic System: Taranaki Volcano, New Zealand. J Petrol 53(2):325–363

    Article  Google Scholar 

Download references

Acknowledgements

We are in debt to A.S. Palmer for his support in the field and to K. Arentsen for her assistance with logistics. Constructive comments from C. Bonadonna, A. Harris, and two anonymous reviewers improved this article. We thank the Department of Conservation in Taranaki for their assistance with permits. SJC is supported by the “Quantifying exposure to specific and multiple volcanic hazards” programme of the NZ Natural Hazards Research Platform. This work forms part of the first author’s doctoral thesis. RTO is supported by a Massey University Doctoral Scholarship, a CONACyT (Mexico) Doctoral Scholarship, and the George Mason Trust of Taranaki.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Torres-Orozco.

Additional information

Editorial responsibility: C. Bonadonna

Electronic supplementary material

Online Resource 1

A Deposit thickness and average pumice and dense clast diameters measured at different sections located on the eastern flanks of Mt. Taranaki. B Volume and density analyses and porosity determinations of pyroclasts from different bed-sets produced by Plinian and sub-Plinian eruptions at Mt. Taranaki. C Summary of key lithostratigraphic characteristics of deposits produced by selected eruptions at Mt. Taranaki (modified from Torres-Orozco et al. 2017). D Isopach data of individual or combined fall deposit layers and resulting geometrical values. E Isopleth data of individual fall deposit layers and resulting geometrical values. F Column height (HT) in kilometers, calculated by applying different methods using isopleth and isopach data. G Eruption classification parameters calculated from isopleth and isopach data. (PDF 656 kb)

Online Resource 2

A Whole-rock analyses of juvenile pyroclasts from different bed-sets deposited by eruptions of Mt. Taranaki. B MgO vs. SiO2 diagrams of bulk-deposit (black symbols), pumice (P) or other vesicular juvenile clasts (VJ, white symbols), and dense andesitic clasts (DC, gray symbols) from different layers, or from different stratigraphic levels within a layer (base, middle “mid” and top), of bed-sets deposited by distinct eruptions from Mt. Taranaki. Data modified from previous works (*) correspond to Franks (1984), May (2003), Platz et al. (2007) and Turner et al. (2011b). BAF block-and-ash flow deposits, PDC other pyroclastic density current deposits. (PDF 159 kb)

Online Resource 3

Bulk, isopach and isopleth, fall deposit data of each bed-set studied. Isopach data were plotted on Log(Thickness) in meters vs. distance expressed as Isopach Area1/2, comprising: a individual segments, a1 proximal single segments (0a) of selected isopachs; b two to three individual segments (proximal 0 or 0b, and others: 1 or 1a, 1b and 2). Isopleth data were plotted on pumice (or vesicular juvenile clasts of the Manganui-D bed-set) or dense andesitic clast diameters (in centimeters) vs. distance expressed as Isopleth Area1/2, comprising: c only individual segments, and c1 proximal (0) segments only constrained for the Upper Inglewood, layer Uig7, to prevent the use of inconsistent data. Data modified from previous works (*) correspond to Whitehead (1976) and Platz et al. (2007). (PDF 311 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres-Orozco, R., Cronin, S.J., Damaschke, M. et al. Diverse dynamics of Holocene mafic-intermediate Plinian eruptions at Mt. Taranaki (Egmont), New Zealand. Bull Volcanol 79, 76 (2017). https://doi.org/10.1007/s00445-017-1162-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-017-1162-4

Keywords

Navigation