Skip to main content

Advertisement

Log in

Reconstruction of total grain size distribution of the climactic phase of a long-lasting eruption: the example of the 2008–2013 Chaitén eruption

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The 2008–2013 eruption of Chaitén Volcano (Chile) was a long-lasting eruption whose climactic phase (May 6, 2008) produced a sub-Plinian plume, with height ranging between 14 and 20 km that dispersed to the NE, reaching the Atlantic coast of Argentina. The erupted material was mainly of lithic origin (∼77 wt%), resulting in a unimodal total grain size distribution (TGSD) dominated by coarse ash (77 wt%), with Mdϕ of 2.7 and σϕ of 2.4. Lapilli clasts (>2 mm) dominate the proximal deposit within ~20 km of the vent, while coarse (63 μm–2 mm) and fine ash (<63 μm) sedimented as far as 800 km from vent, generating mostly poly-modal grain size distributions across the entire deposit. Given that most of the mass is sedimented in proximal areas, results show that possible contributions of later explosive events to the thickness of the distal deposit where layers are less distinguishable (>400 km) do not significantly affect the determination of the TGSD. In contrast, gaps in data sampling in the medial deposit (in particular the gap between 50 and 350 km from vent that coincides with shifts in sedimentation regimes) have large impacts on estimates of TGSD. Particle number distribution for this deposit is characterized by a high power-law exponent (3.0) following a trend very similar to the vesicle size distribution in the juvenile pyroclasts. Although this could be taken to indicate a bubble-driven fragmentation process, we suggest that fragmentation was more likely the result of a shear-driven process because of the predominance of non-vesicular products (lithics and obsidians) and the large fraction of coarse ash in the TGSD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. http://www.ees.lanl.gov/geodynamics/Wohletz/SFT.htm

  2. This estimation corrects and updates the previous estimation of Alfano et al. (2011b) and is based on the isopleth map presented in the same work. In the previous version, the estimate was erroneous due to an overestimation of the downwind limit of the 3.2-cm isopleth.

References

  • Alfano F, Bonadonna C, Delmelle P, Costantini L (2011a) Insights on tephra settling velocity from morphological observations. J Volcanol Geotherm Res 208:86–98. doi:10.1016/j.jvolgeores.2011.09.013

    Article  Google Scholar 

  • Alfano F, Bonadonna C, Volentik ACM et al (2011b) Tephra stratigraphy and eruptive volume of the May, 2008, Chaitén eruption, Chile. Bull Volcanol 73:613–630. doi:10.1007/s00445-010-0428-x

    Article  Google Scholar 

  • Alfano F, Bonadonna C, Gurioli L (2012) Insights into eruption dynamics from textural analysis: the case of the May, 2008, Chaitén eruption. Bull Volcanol 74:2095–2108. doi:10.1007/s00445-012-0648-3

    Article  Google Scholar 

  • Amigo Á, Lara LE, Smith VC (2013) Holocene record of large explosive eruptions from Chaitén and Michinmahuida volcanoes, Chile. Andean Geol 40:227–248. doi:10.5027/andgeoV40n2-a

    Google Scholar 

  • Biass S, Bonadonna C (2014) TOTGS: total grainsize distribution of tephra fallout. https://vhub.org/resources/3297.

  • Bonadonna C, Costa A (2012) Estimating the volume of tephra deposits: a new simple strategy. Geology 40:415–418. doi:10.1130/G32769.1

    Article  Google Scholar 

  • Bonadonna C, Houghton BF (2005) Total grain-size distribution and volume of tephra-fall deposits. Bull Volcanol 67:441–456. doi:10.1007/s00445-004-0386-2

    Article  Google Scholar 

  • Bonadonna C, Phillips JC (2003) Sedimentation from strong volcanic plumes. J Geophys Res Solid Earth 108:2340. doi:10.1029/2002JB002034

    Article  Google Scholar 

  • Bonadonna C, Macedonio G, Sparks RSJ (2002) Numerical modelling of tephra fallout associated with dome collapses and Vulcanian explosions: application to hazard assessment on Montserrat. Geol Soc London Mem 21:517–537. doi:10.1144/GSL.MEM.2002.021.01.23

    Article  Google Scholar 

  • Bonadonna C, Connor CB, Houghton BF, Connor L, Byrne M, Laing A, Hincks TK (2005) Probabilistic modeling of tephra dispersal: hazard assessment of a multiphase rhyolitic eruption at Tarawera, New Zealand. J Geophys Res B Solid Earth 110:1–21. doi:10.1029/2003JB002896

    Google Scholar 

  • Bonadonna C, Genco R, Gouhier M, Pistolesi M, Cioni R, Alfano F, Hoskuldsson A, Ripepe M (2011) Tephra sedimentation during the 2010 Eyjafjallajkull eruption (Iceland) from deposit, radar, and satellite observations. J Geophys Res Solid Earth 116, B12202. doi:10.1029/2011JB008462

    Article  Google Scholar 

  • Bonadonna C, Cioni R, Pistolesi M, Connor C, Scollo S, Pioli L, Rosi M (2013) Determination of the largest clast sizes of tephra deposits for the characterization of explosive eruptions: a study of the IAVCEI commission on tephra hazard modelling. Bull Volcanol 75:1–15. doi:10.1007/s00445-012-0680-3

    Google Scholar 

  • Bonadonna C, Cioni R, Pistolesi M, Elissondo M, Baumann V (2015) Sedimentation of long-lasting wind-affected volcanic plumes: the example of the 2011 rhyolitic Cordón Caulle eruption, Chile. Bull Volcanol 77:1–19. doi:10.1007/s00445-015-0900-8

    Article  Google Scholar 

  • Brown RJ, Branney MJ, Maher C, Dávila-Harris P (2010) Origin of accretionary lapilli within ground-hugging density currents: evidence from pyroclastic couplets on Tenerife. Geol Soc Am Bull 122:305–320. doi:10.1130/B26449.1

    Article  Google Scholar 

  • Carazzo G, Jellinek AM (2013) Particle sedimentation and diffusive convection in volcanic ash-clouds. J Geophys Res Solid Earth 118:1420–1437. doi:10.1002/jgrb.50155

    Article  Google Scholar 

  • Carey S, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125. doi:10.1007/BF01046546

    Article  Google Scholar 

  • Carey SN, Sigurdsson H (1982) Influence of particle aggregation on deposition of distal tephra from the May 18, 1980, eruption of Mount St. Helens volcano. J Geophys Res 87:7061. doi:10.1029/JB087iB08p07061

    Article  Google Scholar 

  • Carn SA, Paluster JS, Lara L, Ewert JW, Watt S, Prata AJ, Thomas RJ, Villarosa G (2009) The unexpected awakening of Chaitén Volcano, Chile. Eos (Washington DC) 90:205–206. doi:10.1029/2009EO240001

    Google Scholar 

  • Cas RAF, Wright JV (1988) Volcanic successions: modern and ancient. Allen and Unwin, London. doi: 10.1007/978-94-009-3167-1

  • Cashman KV, Mangan MT (1994) Physical aspects of magmatic degassing; II, constraints on vesiculation processes from textural studies of eruptive products. Rev Min Geochem 30:447–478

    Google Scholar 

  • Castro JM, Dingwell DB (2009) Rapid ascent of rhyolitic magma at Chaitén Volcano, Chile. Nature 461:780–783. doi:10.1038/nature08458

    Article  Google Scholar 

  • Castro JM, Cordonnier B, Tuffen H, Mark J, Tobinf MJ, Puskarf L, Marting MC, Bechtelg HA (2012) The role of melt-fracture degassing in defusing explosive rhyolite eruptions at volcán Chaitén. Earth Planet Sci Lett 333–334:63–69. doi:10.1016/j.epsl.2012.04.024

    Article  Google Scholar 

  • Castro JM, Schipper CI, Mueller SP, Militzer AS, Amigo A, Parejas CS, Jacob D (2013) Storage and eruption of near-liquidus rhyolite magma at Cordón Caulle, Chile. Bull Volcanol 75:1–17. doi:10.1007/s00445-013-0702-9

    Article  Google Scholar 

  • Costa A, Pioli L, Bonadonna C (2016) Assessing tephra total grain-size distribution: insights from field data analysis. Earth Planet Sci Lett 443:90–107. doi:10.1016/j.epsl.2016.02.040

    Article  Google Scholar 

  • Costantini L, Houghton BF, Bonadonna C (2010) Constraints on eruption dynamics of basaltic explosive activity derived from chemical and microtextural study: the example of the Fontana Lapilli Plinian eruption, Nicaragua. J Volcanol Geotherm Res 189:207–224. doi:10.1016/j.jvolgeores.2009.11.008

    Article  Google Scholar 

  • Dufek J, Manga M, Patel A (2012) Granular disruption during explosive volcanic eruptions. Nat Geosci 5:561–564. doi:10.1038/ngeo1524

    Article  Google Scholar 

  • Durant AJ (2015) Research focus: toward a realistic formulation of fine-ash lifetime in volcanic clouds. Geologija 43:271–272. doi:10.1130/focus032015.1

    Article  Google Scholar 

  • Durant AJ, Rose WI, Sarna-Wojcicki AM, Carey S, Volentik ACM (2009) Hydrometeor-enhanced tephra sedimentation: constraints from the 18 May 1980 eruption of Mount St. Helens. J Geophys Res 114:1–21. doi:10.1029/2008JB005756

    Article  Google Scholar 

  • Durant AJ, Villarosa G, Rose WI, Delmelle P, Prata AJ, Viramonte JG (2012) Long-range volcanic ash transport and fallout during the 2008 eruption of Chaitén Volcano, Chile. Phys Chem Earth 45–46:50–64. doi:10.1016/j.pce.2011.09.004

    Article  Google Scholar 

  • Eychenne J, Le Pennec JL (2012) Sigmoidal particle density distribution in a subplinian scoria fall deposit. Bull Volcanol 74:2243–2249. doi:10.1007/s00445-012-0671-4

    Article  Google Scholar 

  • Eychenne J, Le Pennec JL, Troncoso L et al (2012) Causes and consequences of bimodal grain-size distribution of tephra fall deposited during the August 2006 Tungurahua eruption (Ecuador). Bull Volcanol 74:187–205. doi:10.1007/s00445-011-0517-5

    Article  Google Scholar 

  • Eychenne J, Cashman K, Rust A, Durant A (2015) Impact of the lateral blast on the spatial pattern and grain size characteristics of the 18 May 1980 Mount St. Helens fallout deposit J Geophys Res Solid Earth 120:6018–6038. doi:10.1002/2015JB012116

    Article  Google Scholar 

  • Folch A (2012) A review of tephra transport and dispersal models: evolution, current status, and future perspectives. J Volcanol Geotherm Res 235–236:96–115. doi:10.1016/j.jvolgeores.2012.05.020

    Article  Google Scholar 

  • Folch A, Jorba O, Viramonte J (2008) Volcanic ash forecast—application to the May 2008 Chaitén eruption. Nat Hazards Earth Syst Sci 8:927–940. doi:10.5194/nhess-8-927-2008

    Article  Google Scholar 

  • Genareau K, Proussevitch A, Durant AJ, Mulukutla GK, Sahagian DL (2012) Sizing up the bubbles that produce very fine ash during explosive volcanic eruptions. Geophys Res Lett 39:1–6. doi:10.1029/2012GL052471

    Article  Google Scholar 

  • Genareau K, Mulukutla GK, Proussevitch A, Durant AJ, Rose WI, Sahagian DL (2013) The size range of bubbles that produce ash during explosive volcanic eruptions. J Appl Volcanol 2:4. doi:10.1186/2191-5040-2-4

    Article  Google Scholar 

  • Houghton BF, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 51:451–462. doi:10.1007/BF01078811

    Article  Google Scholar 

  • Inman D (1952) Measures for describing the size distribution of sediments. J Sediment Petrol 125–145. doi: 10.1306/D42694DB-2B26-11D7-8648000102C1865D

  • Jay J, Costa F, Pritchard M, Lara L, Singer B, Herrin J (2014) Locating magma reservoirs using InSAR and petrology before and during the 2011–2012 Cordón Caulle silicic eruption. Earth Planet Sci Lett 395:254–266. doi:10.1016/j.epsl.2014.03.046

    Article  Google Scholar 

  • Kaminski E, Jaupart C (1998) The size distribution of pyroclasts and the fragmentation sequence in explosive volcanic eruptions. J Geophys Res 103:29759. doi:10.1029/98JB02795

    Article  Google Scholar 

  • Kueppers U, Perugini D, Dingwell DB (2006a) Explosive energy during volcanic eruptions from fractal analysis of pyroclasts. Earth Planet Sci Lett 248:800–807. doi:10.1016/j.epsl.2006.06.033

    Article  Google Scholar 

  • Kueppers U, Scheu B, Spieler O, Dingwell DB (2006b) Fragmentation efficiency of explosive volcanic eruptions: a study of experimentally generated pyroclasts. J Volcanol Geotherm Res 153:125–135. doi:10.1016/j.jvolgeores.2005.08.006

    Article  Google Scholar 

  • Lara LE (2009) La erupcion 2008 del volcan Chaiten, Chile: informe preliminar. Andean Geol 36:125–129. doi:10.5027/556

    Google Scholar 

  • Lara LE, Moreno R, Amigo Á, Hoblitt RP, Pierson TC (2013) Late Holocene history of Chaitén Volcano: new evidence for a 17th century eruption. Andean Geol 40:249–261. doi:10.5027/andgeoV40n2-a04

    Google Scholar 

  • Major JJ, Pierson TC, Hoblitt RP, Moreno H (2013) Pyroclastic density currents associated with the 2008–2009 eruption of Chaitén Volcano (Chile): forest disturbances, deposits, and dynamics. Andean Geol 40:324–358. doi:10.5027/andgeoV40n2-a09

    Google Scholar 

  • Manzella I, Bonadonna C, Phillips JC, Monnard H (2015) The role of gravitational instabilities in deposition of volcanic ash. Geologija. doi:10.1130/G36252.1

    Google Scholar 

  • Martin RS, Watt SFL, Pyle DM, Mather TA, Matthews NE, Georg RB, Day JA, Fairhead T, Witt MLI, Quayle BM (2009) Environmental effects of ashfall in Argentina from the 2008 Chaitén volcanic eruption. J Volcanol Geotherm Res 184:462–472. doi:10.1016/j.jvolgeores.2009.04.010

    Article  Google Scholar 

  • Mastin LG, Guffanti M, Servranckx R, Webley P, Barsotti S, Dean K, Durant AJ, Ewert JW, Neri A, Rose WI, Schneider D, Siebert L, Stunder B, Swanson G, Tupper A, Volentik ACM, Waythomas CF (2009) A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J Volcanol Geotherm Res 186:10–21. doi:10.1016/j.jvolgeores.2009.01.008

    Article  Google Scholar 

  • Osores MS, Folch A, Collini E, Villarosa G, Durant AJ, Pujol G, Viramonte GJ (2013) Validation of the FALL3D model for the 2008 Chaitén eruption using field and satellite data. Andean Geol 40:262–276. doi:10.5027/andgeoV40n2-a05

    Google Scholar 

  • Perugini D, Kueppers U (2012) Fractal analysis of experimentally generated pyroclasts: a tool for volcanic hazard assessment. Acta Geophys 60:682–698. doi:10.2478/s11600-012-0019-7

    Article  Google Scholar 

  • Pierson TC, Major JJ, Amigo Á, Moreno H (2013) Acute sedimentation response to rainfall following the explosive phase of the 2008–2009 eruption of Chaitén volcano, Chile. Bull Volcanol 75:1–17. doi:10.1007/s00445-013-0723-4

    Article  Google Scholar 

  • Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51:1–15. doi:10.1007/BF01086757

    Article  Google Scholar 

  • Rust AC, Cashman KV (2011) Permeability controls on expansion and size distributions of pyroclasts. J Geophys Res Solid Earth 116:1–17. doi:10.1029/2011JB008494

    Article  Google Scholar 

  • Tsunematsu K, Bonadonna C (2015) Grain-size features of two large eruptions from Cotopaxi volcano (Ecuador) and implications for the calculation of the total grain-size distribution. Bull Volcanol 77:1–12. doi:10.1007/s00445-015-0949-4

    Article  Google Scholar 

  • Turcotte DL (1986) Fractals and fragmentation. J Geophys Res Solid Earth 91:1921–1926. doi:10.1029/JB091iB02p01921

    Article  Google Scholar 

  • Volentik ACM, Bonadonna C, Connor CB, Connor L, Rosi M (2010) Modeling tephra dispersal in absence of wind: insights from the climactic phase of the 2450BP Plinian eruption of Pululagua Volcano (Ecuador). J Volcanol Geotherm Res 193:117–136. doi:10.1016/j.jvolgeores.2010.03.011

    Article  Google Scholar 

  • Walker GPL (1971) Grain-size characteristics of pyroclastic deposits. J Geol 79:696–714. doi:10.2307/30065501

    Article  Google Scholar 

  • Watt SFL, Pyle DM, Mather T, Martin RS, Matthews NE (2009) Fallout and distribution of volcanic ash over Argentina following the May 2008 explosive eruption of Chaitén, Chile. J Geophys Res Solid Earth 114:1–11. doi:10.1029/2008JB006219

    Google Scholar 

  • Watt SFL, Pyle DM, Naranjo J, Rosqvist G, Mella M, Mather TA, Moreno H (2011) Holocene tephrochronology of the Hualaihue region (Andean southern volcanic zone, ∼42° S), southern Chile. Quat Int 246:324–343. doi:10.1016/j.quaint.2011.05.029

    Article  Google Scholar 

  • Watt SFL, Gilbert JS, Folch A, Phillips JC, Cai XM (2015) An example of enhanced tephra deposition driven by topographically induced atmospheric turbulence. Bull Volcanol 77:1–14. doi:10.1007/s00445-015-0927-x

    Article  Google Scholar 

  • Wicks C, de la Llera JC, Lara LE, Lowenstern J (2011) The role of dyking and fault control in the rapid onset of eruption at Chaitén Volcano, Chile. Nature 478:374–377. doi:10.1038/nature10541

    Article  Google Scholar 

  • Wilson TM, Stewart C, Sword-Daniels V, Leonard GS, Johnston DM, Cole JW, Wardman J, Wilson G, Barnard ST (2012) Volcanic ash impacts on critical infrastructure. Phys Chem Earth Parts A/B/C 45–46:5–23. doi:10.1016/j.pce.2011.06.006

    Article  Google Scholar 

  • Wohletz K, Sheridan M, Brown W (1989) Particle size distribution and the sequential fragmentation/transport theory applied to volcanic ash. J Geophys Res 94:15–703. doi:10.1029/JB094iB11p15703

    Article  Google Scholar 

Download references

Acknowledgments

Sebastien Biass is thanked for the implementation of the Voronoi tessellation script to describe the weight of individual polygons (https://vhub.org/resources/329). We thank Raffaello Cioni, Danilo M. Palladino and the Associate Editor (Jacopo Taddeucci) for their comments and suggestions that helped greatly to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Alfano.

Additional information

Editorial responsibility: J. Taddeucci

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 859 kb)

ESM 2

(XLSX 33 kb)

Appendix A. Determination of synthetic points and sensitivity analysis

Appendix A. Determination of synthetic points and sensitivity analysis

Three large gaps in the data sampling were identified within the tephra deposit of the May 6, 2008 Chaitén eruption (Z1: 20–140 km from the vent; Z2: 260–380 km from the vent; Z3: 570–770 km from the vent; Fig. 9a of main text). Synthetic points were estimated in order to cover the lack of data in these three areas. The points were chosen along the dispersal axis and equally spaced. In order to assess the number of synthetic points required to obtain a stable TGSD, the calculation was carried out considering 3 points (dataset B1; 1 point per zone), 9 points (dataset B2; 3 points per zone) and 15 points (dataset B3; 5 points per zone), respectively (Table 2). Dataset B1 includes the synthetic points located in the middle of the zones (i.e. 80, 320 and 670 km from the vent for the areas Z1, Z2 and Z3, respectively). Dataset B2 includes the points located at 50, 80 and 110 km from the vent for Z1; 290, 320 and 650 km from the vent for Z2; 625, 670 and 715 km from the vent for Z3. Dataset B3 includes the points located at 40, 60, 80, 100 and 120 km from the vent for Z1; 280, 300, 320, 340 and 360 km from the vent for Z2; 610, 640, 670, 700 and 730 km from the vent for Z3 (Table 2).

The Mdϕ and the mass load of lapilli (X l), coarse ash (X c) and fine ash (X f) for each of these points were estimated based on the dispersal maps of Figs. 6 and 7, and using the decay-trend plots of Fig. 8 of the main text. According to the observed decay trends, no lapilli particles sedimented in these areas (Fig. 8b). Based on the extrapolated grain size parameters, a synthetic GSD for each point was determined. A normal distribution was calculated based on the Mdϕ value for each point and using a sorting determined as the average of the values observed through the deposit (i.e. 0.4). The GSDs were then corrected for the extrapolated fraction of coarse and fine ash. The resulting GSD are shown in Fig. 12.

The GSD of the synthetic points were then used to extend the original dataset (dataset A in Fig. 9b). Results of the TGSD associated with these three datasets are shown in Fig. 13. The difference of TGSD obtained using datasets B2 and B3 is small, whereas dataset B1 gives a TGSD skewed towards the coarse size fraction. We conclude that three points per zone are representative for the data gap of the climactic phase of the 2008–2013 Chaitén eruption and are sufficient to generate stable TGSD results.

Fig. 12
figure 12

Plots showing the GSD derived for each synthetic point selected the areas Z1, Z2 and Z3 (Table 2)

Fig. 13
figure 13

Plot showing the TGSD derived for datasets B1, B2 and B3 containing 3, 9 and 15 points, respectively

Table 2 Description of synthetic points where the distance from the vent (D, km) and values of Mdϕ, X c and X f fraction, and mass load (M; kg/m2) are reported. Z1, Z2 and Z3 indicate the three critical areas of Fig. 9a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfano, F., Bonadonna, C., Watt, S. et al. Reconstruction of total grain size distribution of the climactic phase of a long-lasting eruption: the example of the 2008–2013 Chaitén eruption. Bull Volcanol 78, 46 (2016). https://doi.org/10.1007/s00445-016-1040-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-016-1040-5

Keywords

Navigation