Skip to main content
Log in

The effects of the host-substrate properties on maar-diatreme volcanoes: experimental evidence

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

While the relationship between the host-substrate properties and the formation of maar-diatreme volcanoes have been investigated in the past, it remains poorly understood. In order to establish the effects of the qualitative host-substrate properties on crater depth, diameter, morphological features, and sub-surface structures, we present a comparison of four campaigns of experiments that used small chemical explosives buried in various geological media to simulate the formation of maar-diatremes. Previous results from these experiments have shown that primary variations in craters and sub-surface structures are related to the scaled depth (physical depth divided by cube root of blast energy). Our study reveals that single explosions at optimal scaled depths in stronger host materials create the largest and deepest craters with steep walls and the highest crater rims. For single explosions at deeper than optimal scaled depths, the influence of material strength is less obvious and non-linear for crater depth, and non-existent for crater diameter, within the range of the experiments. For secondary and tertiary blasts, there are no apparent relationships between the material properties and the crater parameters. Instead, the presence of pre-existing craters influences the crater evolution. A general weakening of the materials after successive explosions can be observed, suggesting a possible decrease in the host-substrate influence even at optimal scaled depth. The results suggest that the influence of the host-substrate properties is important only in the early stage of a maar-diatreme (neglecting post-eruptive slumping into the open crater) and decreases as explosion numbers increase. Since maar-diatremes reflect eruptive histories that involve tens to hundreds of individual explosions, the influence of initial substrate properties on initial crater processes could potentially be completely lost in a natural system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Auer A, Martin U, Nemeth K (2007) The Fekete-hegy (Balaton Highland Hungary) “soft-substrate” and “hard-substrate” maar volcanoes in an aligned volcanic complex—implications for vent geometry, subsurface stratigraphy and the palaeoenvironmental setting. J Volcanol Geotherm Res 159:225–245. doi:10.1016/j.jvolgeores.2006.06.008

    Article  Google Scholar 

  • Coulomb CA (1773) Sur l’application des règles de maximis et minimis à quelques problèmes de statique, relatifs à l’architecture, in Mémoires de mathématiques et de physique, vol. 7. Académie Royale des Sciences de Paris, Paris, p 343–382

  • Delpit S, Ross P-S, Hearn BC (2014) Deep-bedded ultramafic diatremes in the Missouri River Breaks volcanic field, Montana, USA: 1 km of syn-eruptive subsidence. Bull Volcanol 76:832. doi:10.1007/s00445-014-0832-8

    Article  Google Scholar 

  • Fredlund DG, Morgenstern NR, Widger RA (1978) The shear strength of unsaturated soils. Can Geotech J 15:313–321

    Article  Google Scholar 

  • Geshi N, Németh K, Oikawa T (2011) Growth of phreatomagmatic explosion craters: a model inferred from Suoana crater in Miyakejima Volcano, Japan. J Volcanol Geotherm Res 201:30–38. doi:10.1016/j.jvolgeores.2010.11.012

    Article  Google Scholar 

  • Goto A, Taniguchi H, Yoshida M, Ohba T, Oshima H (2001) Effects of explosion energy and depth to the formation of blast wave and crater: field explosion experiment for the understanding of volcanic explosion. J Geophys Res 28:4287–4290

    Google Scholar 

  • Graettinger AH, Valentine GA, Sonder I, Ross P-S, White JDL, Taddeucci J (2014) Maar-diatreme geometry and deposits: subsurface blast experiments with variable explosion depth. Geochem Geophys Geosyst. doi:10.1002/2013GC005198, 15

    Google Scholar 

  • Graettinger AH, Valentine GA, Sonder I, Ross P-S, White JDL (2015) Facies distribution of ejecta in analog tephra rings from experiments with single and multiple subsurface explosions. Bull Volcanol 77:66–78. doi:10.1007/s00445-015-0951x-

    Article  Google Scholar 

  • Hornbaker DJ, Albert R, Albert I, Barabási A-L, Schiffer P (1997) What keeps sandcastles standing? Nature 387:765

    Article  Google Scholar 

  • Kim T-H (2001) Moisture-induced tensile strength and cohesion in sand. Dissertation, University of Colorado, Colorado, USA

  • Lefebvre NS, White JDL, Kjarsgaard BA (2013) Unbedded diatreme deposits reveal maar-diatreme-forming eruptive processes: standing Rocks West, Hopi Buttes, Navajo Nation, USA. Bull Volcanol 75:739

    Article  Google Scholar 

  • Lorenz V (1973) On the formation of maars. Bull Volcanol 37:183–204

    Article  Google Scholar 

  • Lorenz V (1986) On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bull Volcanol 48:265–274

    Article  Google Scholar 

  • Lorenz V (2003) Maar-diatreme volcanoes, their formation, and their setting in hard-rock or soft-rock environments. GeoLines 15:72–83

    Google Scholar 

  • Palladino DM, Valentine GA, Scottili G, Taddeucci J (2015) Maars to calderas: end-members on a spectrum of explosive volcanic depressions. Front Earth Sci 3:36. doi:10.3389/feart.2015.00036

    Article  Google Scholar 

  • Ross P-S, Delpit S, Haller MJ, Németh K, Corbella H (2011) Influence of the substrate on maar-diatreme volcanoes—an example of a mixed setting from the Pali Aike Volcanic Field, Argentina. J Volcanol Geotherm Res 201:253–271. doi:10.1016/j.jvolgeores.2010.07.018

    Article  Google Scholar 

  • Ross P-S, White JDL, Valentine GA, Taddeucci J, Sonder I, Andrews R (2013) Experimental birth of a maar-diatreme volcano. J Volcanol Geotherm Res 260:1–12. doi:10.1016/j.jvolgeores.2013.05.005

    Article  Google Scholar 

  • Singhal BBS, Gupta RP (2010) Applied hydrogeology of fractured rocks, 2nd edn. Springer Science & Business Media, New York, pp 13–33

    Book  Google Scholar 

  • Sonder I, Graettinger AH, Valentine GA (2015) Scaling multiblast craters: general approach and application to volcanic craters. J Geophys Res Solid Earth 120:6141–6158. doi:10.1002/2015JB012018

    Article  Google Scholar 

  • Sweeney MR, Valentine GA (2015) Transport and mixing dynamics from explosions in debris-filled volcanic conduits: numerical results and implications for maar-diatreme volcanoes. Earth Planet Sci Lett 425:64–76. doi:10.1016/j.epsl.2015.05.038

    Article  Google Scholar 

  • Taddeucci J, Valentine GA, Sonder I, White JDL, Ross P-S, Scarlato P (2013) The effect of pre-existing crater on the initial development of explosive volcanic eruptions: an experimental investigation. Geophys Res Lett 40:507–510. doi:10.1002/grl.50176

    Article  Google Scholar 

  • Valentine GA, van Wyk de Vries B (2014) Unconventional maar diatreme and associated intrusions in soft sediment-hosted Mardoux structure (Gergovie, France). Bull Volcanol 76:807

    Article  Google Scholar 

  • Valentine GA, White JDL (2012) Revised conceptual model for maar-diatremes: subsurface processes, energetics, and eruptive products. Geology 40:1111–1114. doi:10.1130/G33411.1

    Article  Google Scholar 

  • Valentine GA, White JDL, Ross P-S, Amin J, Taddeucci J, Sonder I, Johnson PJ (2012) Experimental craters formed by single and multiple buried explosions and implications for volcanic craters with emphasis on maars. Geophys Res Lett 39:L20301. doi:10.1029/2012GL053716

    Article  Google Scholar 

  • Valentine GA, Graettinger AH, Sonder I (2014) Explosion depths for phreatomagmatic eruptions. Geophys Res Lett 41:3045–3051. doi:10.1002/2014GL060096

    Article  Google Scholar 

  • Valentine GA, Graettinger AH, Macorps É, Ross P-S, White JDL, Döhring E, Sonder I (2015) Experiments with vertically and laterally migrating subsurface explosions with applications to the geology of phreatomagmatic and hydrothermal explosion craters and diatremes. Bull Volcanol 77:1–17. doi:10.1007/s00445-015-0901-7

    Article  Google Scholar 

  • Van Mechelen JLM (2004) Strength of moist sand controlled by surface tension for tectonic analogue modelling. Tectonophysics 384:275–284. doi:10.1016/j.tecto.2004.04.003

    Article  Google Scholar 

  • White JDL, Ross P-S (2011) Maar-diatreme volcanoes: a review. J Volcanol Geotherm Res 201:1–29. doi:10.1016/j.jvolgeores.2011.01.010

    Article  Google Scholar 

  • Wohletz K, Heiken G (1992) Volcanology and geothermal energy. University of California Press, Berkeley, p 432

    Google Scholar 

  • Zhao Z, Liu C, Brogliato B (2008) Energy dissipation and dispersion effects in granular media. Phys Rev E 78:031307. doi:10.1103/PhysRevE.78.031307

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the INVOGE Exchange Program (Élodie Macorps), by the US National Science Foundation (grant EAR 1420455 to Dr. Greg Valentine), and by the University at Buffalo 3E fund. The authors thank Valerio Acocella, Karoly Nemeth, and Olivier Roche for their constructive and helpful reviews of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Élodie Macorps.

Additional information

Editorial responsibility: V. Acocella, acting Executive Editor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macorps, É., Graettinger, A.H., Valentine, G.A. et al. The effects of the host-substrate properties on maar-diatreme volcanoes: experimental evidence. Bull Volcanol 78, 26 (2016). https://doi.org/10.1007/s00445-016-1013-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-016-1013-8

Keywords

Navigation