Skip to main content
Log in

Determining change points in data completeness for the Holocene eruption record

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Changes in data completeness for the Smithsonian Institution’s “Volcanoes of the World” (VOTW) eruption catalogue, by region and for selected countries, are determined and utilised to estimate average eruption recurrence intervals. In the VOTW database, the number of documented volcanic eruptions has increased markedly since the middle of the last millennium. This is largely attributed to population expansion, geological investigation and improvements in detection and recording technologies, rather than an increase in volcanic activity. Simple methods, such as break-in-slope or stationarity tests, can be used to determine changes in data completeness, but often require subjective choices, introducing additional uncertainty. A Markov chain Monte Carlo simulation method for assessing and determining changes in the completeness of natural hazard event catalogues is adapted to determine the completeness of the database. Data completeness is assumed to follow a step-change model, where the probability of documenting an eruption is Volcanic Explosivity Index-dependent before the change point date and 100 % after. A distribution of candidate change point dates is obtained for each region and country subset which allows uncertainty in the data completeness date to be quantified, and for uncertainty in eruption frequencies to be expressed and propagated through statistical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Auker M, Sparks R, Siebert L, Crosweller H, Ewert J (2013) A statistical analysis of the global historical volcanic fatalities record. J Appl Volcanol 2:1–24. doi:10.1186/2191-5040-2-2

    Article  Google Scholar 

  • Chester DK, Degg M, Duncan AM, Guest J (2000) The increasing exposure of cities to the effects of volcanic eruptions: a global survey. Glob Environ Chang B: Environ Hazards 2:89–103

    Article  Google Scholar 

  • Coles S (2001) An introduction to statistical modeling of extreme values. Springer-Verlag, London, UK

  • Coles S, Sparks R (2006) Extreme value methods for modelling historical series of large volcanic magnitudes. In: Mader H, Coles S, Connor C, Connor L (eds) Statistics in volcanology, vol 1. Geological Society of London, London, pp 47–56

    Google Scholar 

  • Connor C, Hill B, Winfrey B, Franklin N, Femina P (2001) Estimation of volcanic hazards from Tephra fallout. Nat Hazards Rev 2:33–42. doi:10.1061/(ASCE)1527-6988(2001)2:1(33)

    Article  Google Scholar 

  • Crosweller HS et al (2012) Global database on large magnitude explosive volcanic eruptions (LaMEVE). J Appl Volcanol 1:4

    Article  Google Scholar 

  • Davison AC, Smith RL (1990) Models for exceedances over high thresholds. J R Stat Soc Ser B Methodol 52:393–442. doi:10.2307/2345667

    Google Scholar 

  • De la Cruz-Reyna S (1991) Poisson-distributed patterns of explosive eruptive activity. Bull Volcanol 54:57–67. doi:10.1007/BF00278206

    Article  Google Scholar 

  • Deligne NI, Coles SG, Sparks RSJ (2010) Recurrence rates of large explosive volcanic eruptions. J Geophys Res: Solid Earth 115, B06203. doi:10.1029/2009JB006554

    Google Scholar 

  • Dussauge-Peisser C, Helmstetter A, Grasso JR, Hantz D, Desvarreux P, Jeannin M, Giraud A (1999) Probabilistic approach to rock fall hazard assessment: potential of historical data analysis. Nat Hazards Earth Syst Sci 2:15–26. doi:10.5194/nhess-2-15-2002

    Article  Google Scholar 

  • Furlan C (2010) Extreme value methods for modelling historical series of large volcanic magnitudes. Stat Model 10:113–132. doi:10.1177/1471082x0801000201

    Article  Google Scholar 

  • Geweke J (1992) Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In: Bernardo JM, Berger JO, Dawid AP, Smith AFM (eds) Bayesian Statistics 4. Oxford University Press, Oxford, pp 169-193

  • Gilks WR, Richardson S, Spiegelhalter DJ (1998) Markov chain Monte Carlo in practice. Chapman & Hall, Boca Raton

    Google Scholar 

  • Guttorp P, Thompson ML (1991) Estimating second-order parameters of volcanicity from historical data. J Am Stat Assoc 86:578–583. doi:10.1080/01621459.1991.10475082

    Article  Google Scholar 

  • Hakimhashemi AH, Grünthal G (2012) A statistical method for estimating catalog completeness applicable to long‐term nonstationary seismicity data. Bull Seismol Soc Am 102:2530–2546

    Article  Google Scholar 

  • Hayakawa Y (1997) Hayakawa's 2000-year eruption catalog. http://gunma.zamurai.jp/database/

  • Jenkins S, Magill C, McAneney J, Blong R (2012) Regional ash fall hazard I: a probabilistic assessment methodology. Bull Volcanol 74:1699–1712. doi:10.1007/s00445-012-0627-8

    Article  Google Scholar 

  • Kirschbaum D, Adler R, Hong Y, Hill S, Lerner-Lam A (2010) A global landslide catalog for hazard applications: method, results, and limitations. Nat Hazards 52:561–575

    Article  Google Scholar 

  • Klein FW (1982) Patterns of historical eruptions at Hawaiian volcanoes. J Volcanol Geotherm Res 12:1–35. doi:10.1016/0377-0273(82)90002-6

    Article  Google Scholar 

  • Kyselý J, Gaál L, Picek J (2011) Comparison of regional and at-site approaches to modelling probabilities of heavy precipitation. Int J Climatol 31:1457–1472. doi:10.1002/joc.2182

    Article  Google Scholar 

  • Lamb HH (1970) Volcanic dust in the atmosphere; with a chronology and assessment of its meteorological significance. Phil Trans R Soc London A Math Phys Sci 266:425–533. doi:10.2307/73764

    Article  Google Scholar 

  • Landsea C (2007) Counting Atlantic tropical cyclones back to 1900 Eos. Trans Am Geophys Union 88:197–202. doi:10.1029/2007EO180001

    Article  Google Scholar 

  • Lang M, Ouarda TBMJ, Bobée B (1999) Towards operational guidelines for over-threshold modeling. J Hydrol 225:103–117. doi:10.1016/S0022-1694(99)00167-5

    Article  Google Scholar 

  • Marzocchi W, Zaccarelli L (2006) A quantitative model for the time-size distribution of eruptions. J Geophys Res: Solid Earth 111, B04204. doi:10.1029/2005JB003709

    Google Scholar 

  • Mendoza-Rosas AT, De la Cruz-Reyna S (2008) A statistical method linking geological and historical eruption time series for volcanic hazard estimations: applications to active polygenetic volcanoes. J Volcanol Geotherm Res 176:277–290

    Article  Google Scholar 

  • Mulargia F, Gasperini P, Tinti S (1987) Identifying different regimes in eruptive activity: an application to Etna volcano. J Volcanol Geotherm Res 34:89–106. doi:10.1016/0377-0273(87)90095-3

    Article  Google Scholar 

  • Newhall CG, Self S (1982) The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism. J Geophys Res: Oceans 87:1231–1238. doi:10.1029/JC087iC02p01231

    Article  Google Scholar 

  • Pickands J III (1971) The two-dimensional Poisson process and extremal processes. J Appl Probab 8:745–756

    Article  Google Scholar 

  • Rotondi R, Garavaglia E (2002) Statistical analysis of the completeness of a seismic catalogue. Nat Hazards 25:245–258. doi:10.1023/A:1014855822358

    Article  Google Scholar 

  • Schuster SS, Blong RJ, Speer MS (2005) A hail climatology of the greater Sydney area and New South Wales. Aust Int J Climatol 25:1633–1650. doi:10.1002/joc.1199

    Article  Google Scholar 

  • Siebert L, Simkin T (2002) Volcanoes of the World: an illustrated catalog of Holocene volcanoes and their eruptions. Smithsonian Institution, Global Volcanism Program digital information series, GVP-4. (http://www.volcano.si.edu)

  • Siebert L, Simkin T, Kimberly P (2010) Volcanoes of the World, 3rd edn. University of California Press, Berkeley

    Google Scholar 

  • Small C, Naumann T (2001) The global distribution of human population and recent volcanism. Glob Environ Chang B: Environ Hazards 3:93–109

    Article  Google Scholar 

  • Wang T, Bebbington M (2012) Estimating the likelihood of an eruption from a volcano with missing onsets in its record. J Volcanol Geotherm Res 243–244:14–23. doi:10.1016/j.jvolgeores.2012.06.032

    Article  Google Scholar 

  • Watt SFL, Pyle DM, Mather TA (2013) The volcanic response to deglaciation: evidence from glaciated arcs and a reassessment of global eruption records. Earth Sci Rev 122:77–102. doi:10.1016/j.earscirev.2013.03.007

    Article  Google Scholar 

  • Wirtz A, Kron W, Löw P, Steuer M (2014) The need for data: natural disasters and the challenges of database management. Nat Hazards 70:135–157. doi:10.1007/s11069-012-0312-4

    Article  Google Scholar 

  • Woessner J, Wiemer S (2005) Assessing the quality of earthquake catalogues: estimating the magnitude of completeness and its uncertainty. Bull Seismol Soc Am 95:684–698. doi:10.1785/0120040007

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ed Venzke and the Smithsonian Institution Global Volcanism Program for early access to the updated online Volcanoes of the World catalogue. We thank Mark Bebbington and an anonymous reviewer for providing detailed suggestions that improved the manuscript. Stuart Mead is jointly supported by an Australian Postgraduate Award (APA) and scholarship from the Commonwealth Scientific and Industrial Research (CSIRO) Digital Productivity and Services (DPAS) flagship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart Mead.

Additional information

Editorial responsibility: S. De la Cruz-Reyna

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mead, S., Magill, C. Determining change points in data completeness for the Holocene eruption record. Bull Volcanol 76, 874 (2014). https://doi.org/10.1007/s00445-014-0874-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-014-0874-y

Keywords

Navigation