Skip to main content
Log in

Reconstruction of the volcanic history of the Tacámbaro-Puruarán area (Michoacán, México) reveals high frequency of Holocene monogenetic eruptions

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The 690 km2 Tacámbaro-Puruarán area located at the arc-front part of the Michoácan-Guanajuato volcanic field in the Trans-Mexican Volcanic Belt (TMVB) records a protracted history of volcanism that culminated with intense monogenetic activity in the Holocene. Geologic mapping, 40Ar/39Ar and 14C radiometric dating, and whole-rock chemical analyses of volcanic products provide insights to that history. Eocene volcanics (55–40 Ma) exposed at uplifted blocks are related to a magmatic arc that preceded the TMVB. Early TMVB products are represented by poorly exposed Pliocene silicic domes (5–2 Ma). Quaternary (<2 Ma) volcanoes (114 mapped) are mainly scoria cones with lavas (49 vol.%), viscous lava flows (22 vol.%), and lava shields (22 vol.%). Erupted products are dominantly either basaltic andesites (37 vol. %), or andesites (17 vol.%), or span across both compositions (28 vol.%). Basalts (9 vol.%), dacites (4 vol.%), shoshonites (2 vol.%), and other alkali-rich rocks (<3 vol.%) occur subordinately. Early-Pleistocene volcanism was bimodal (dacites and basalts) and voluminous while since 1 Ma small-volume eruptions of intermediate magmas have dominated. Higher rates of lithospheric extension in the Quaternary may have allowed a larger number of small, poorly evolved dikes to reach the surface during this period. Eruptive centers as old as 1.7 Ma are aligned in a NE direction parallel to both, basement faults and the direction of regional compressive stress, implying structural control on volcanic activity. Data suggest that volcanism was strongly pulsatory and fed by localized low-degree partial melting of mantle sources. In the Holocene, at least 13 eruptions occurred (average recurrence interval of 800 years). These produced ~3.8 km3 of basaltic andesitic to andesitic magma and included four eruptions dated at ~1,000; 4,000; 8,000; and 11,000 years bc (calibrated 14C ages). To date, this is one of the highest monogenetic eruption frequencies detected within such a small area in a subduction-related arc-setting. These anomalous rates of monogenetic activity in an area with thick crust (>30 km) may be related to high rates of magma production at depth and a favorable tectonic setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agustín-Flores J, Siebe C, Guilbaud M-N (2011) Geology and geochemistry of Pelagatos, Cerro del Agua, and Dos Cerros monogenetic volcanoes in the Sierra Chichinautzin volcanic field, south of México City. J Volcanol Geotherm Res 201:143–162

    Article  Google Scholar 

  • Ban M, Hasenaka T, Delgado Granados H, Takaoka N (1992) K-Ar ages of lavas from shield volcanoes in the Michoacán-Guanajuato volcanic field, Mexico. Geofis Int 31:467–473

    Google Scholar 

  • Bebbington MS, Cronin SJ (2011) Spatio-temporal hazard estimation in the Auckland Volcanic Field, New Zealand, with a new event-order model. Bull Volcanol 73:55–72

    Article  Google Scholar 

  • Behncke B, Neri M, Pecora E, Zanon V (2006) The exceptional activity and growth of the Southeast Crater, Mount Etna (Italy), between 1996 and 2001. Bull Volcanol 69:149–173

    Article  Google Scholar 

  • Blatter DL, Hammersley L (2010) Impact of the Orozco Fracture Zone on the central Mexican Volcanic Belt. J Volcanol Geotherm Res 197:67–84

    Article  Google Scholar 

  • Blatter DL, Carmichael ISE, Deino AL, Renne PR (2001) Neogene volcanism at the front of the central Mexican volcanic belt: basaltic andesites to dacites, with contemporaneous shoshonites and high-TiO2 lava. Geol Soc Am Bull 113:1324–1342

    Article  Google Scholar 

  • Bloomfield K (1975) A late-Quaternary monogenetic volcano field in central Mexico. Geologische Rundsch 64:476–497

    Article  Google Scholar 

  • Braitseva OA, Melekestsev IV, Flerov GB, Ponomareva VV, Sulerzhitsky LD, Litasova SN (1984) Holocene volcanism of the Tolbachik regional zone of cinder cones. In: Fedotov SA (ed) Great Tolbachik fissure eruption, Kamchatka, 1975–1976. Nauka, Moscow, pp 177–209, In Russian

    Google Scholar 

  • Carmichael ISE (2002) The andesite aqueduct: perspectives on the evolution of intermediate magmatism in west-central (105–99_W) Mexico. Contrib Mineral Petrol 143:641–663

    Article  Google Scholar 

  • Carmichael ISE, Frey HM, Lange RA, Hall CM (2006) The Pleistocene cinder cones surrounding Volcán Colima, Mexico re-visited: eruption ages and volumes, oxidation states, and sulfur content. Bull Volcanol 68:407–419

    Article  Google Scholar 

  • Carrasco-Núñez G, Siebert L, Díaz-Castellón R, Vásquez-Selem L, Capra L (2010) Evolution and hazards of a long-quiescent compound shield-like volcano: Cofre de Perote, eastern Trans-Mexican Volcanic Belt. J Volcanol Geotherm Res 197:209–224

    Article  Google Scholar 

  • Cervantes P, Molinero RJ (1995) Eventos volcánicos al sur de la ciudad de México. Master’s thesis, Facultad de Ingeniería, UNAM, México D.F., 74 p

  • Connor C, Stamatakos JA, Ferrill DA, Hill BE, Ofoegbu GI, Conway FM, Sagar B, Trapp J (2000) Geologic factors controlling patterns of small-volume basaltic volcanism: application to a volcanic hazards assessment at Yucca Mountain, Nevada. J Geophys Res 105:417–432

    Article  Google Scholar 

  • Conway M, Ferrill DA, Hall CM, Morris AP, Stamatokos JA, Connor CB, Halliday AN, Condit C (1997) Timing of basaltic volcanism along the Mesa Butte Fault in the San Francisco Volcanic Field, Arizona, from 40Ar/39Ar dates: implications for longevity of cinder cone alignments. J Geophys Res 102:815–824

    Article  Google Scholar 

  • Delacour A, Gerbe M-C, Thouret J-C, Wörner G, Paquereau-Lebti P (2007) Magma evolution of Quaternary minor volcanic centers in southern Peru, Central Andes. Bull Volcanol 69:581–608

    Article  Google Scholar 

  • Delaney PT, Pollard DD, Ziony JI, McKee EH (1986) Field relations between dikes and joints: emplacement processes and paleostress analysis. J Geophys Res 91:4920–4938

    Article  Google Scholar 

  • Demant A (1978) Características del Eje Neovolcánico Transmexicano y sus problemas de interpretación. Revista Mexicana de Ciencias Geológicas 2:172–187

    Google Scholar 

  • Favalli M, Karátson D, Mazzarini F, Pareshi MT, Boschi E (2009) Morphometry of scoria cones located on a volcano flank: a case study from Mt. Etna (Italy), based on high-resolution LiDAR data. J Volcanol Geotherm Res 186:320–330

    Article  Google Scholar 

  • Fornaciai A, Behncke B, Favalli M, Neri M, Tarquini SS, Boschi E (2010) Detecting short-term evolution of Etnean scoria cones: a LIDAR-based approach. Bull Volcanol 72:1209–1222

    Article  Google Scholar 

  • Frey HM, Lange RA, Hall CM, Delgado-Granados H (2004) Magma eruption rates constrained by 40Ar/39Ar chronology and GIS for the Ceboruco-San Pedro volcanic field, western Mexico. Geol Soc Am Bull 116:259–276

    Article  Google Scholar 

  • Fries C (1953) Volumes and weights of pyroclastic material, lava, and water erupted by Paricutin Volcano, Michoacán, Mexico. Trans Am Geophys Union 34:603–616

    Google Scholar 

  • Gaffney ES, Damjanac B, Valentine GA (2007) Localization of volcanic activity: 2. Effects of pre-existing structure. Earth Planet Sci Lett 263:323–338

    Article  Google Scholar 

  • García E (2004) Modificaciones al sistema de clasificación climática de Köppen. Instituto de Geografía, México D.F., p 90

    Google Scholar 

  • Garduño-Monroy VH, Gutiérrez-Negrín LCA (1992) Magmatismo, hiatus y tectonismo de la Sierre Madre Occidental y del Cinturón Volcanico Mexicano. Geofis Int 31(4):417–429

    Google Scholar 

  • Garduño-Monroy VH, Corona-Chávez P, Israde-Alcántara I, Mennella L, Arreygue E, Bigioggero B, Chiesa S (1999) Carta geológica de Michoacán, 1:250,000. Universidad Michoacana de San Nicolás de Hidalgo, Mexico, p 111

    Google Scholar 

  • Germa A, Quidelleur X, Gillot PY, Tchilinguirian P (2010) Volcanic evolution of the back-arc Pleistocene Pyrún Matrú volcanic field (Argentina). J S Am Earth Sci 29:717–730

    Article  Google Scholar 

  • Gómez-Tuena A, MaT O-E, Ferrari L (2007) Igneous petrogenesis of the Trans-Mexican Volcanic Belt. In: Alaniz-Álvarez SA and Nieto-Samaniego AF (eds) Geology of México, celebrating the centenary of the Geological Society of México. Geol Soc Am Spec Pap 422:129–181

    Google Scholar 

  • Guilbaud M-N, Siebe C, Salinas S (2009a) Excursions to Paricutin and Jorullo (Michoacán), the youngest volcanoes of the Trans-Mexican Volcanic Belt. Impretei, México D.F., p 31

    Google Scholar 

  • Guilbaud M-N, Siebe C, Agustín-Flores J (2009b) Eruptive style of the young high-Mg basaltic-andesite Pelagatos scoria cone, southeast of México City. Bull Volcanol 71:859–880

    Article  Google Scholar 

  • Guilbaud M-N, Siebe C, Layer P, Salinas S, Castro-Govea R, Garduño-Monroy VH, Le Corvec N (2011) Geology, geochronology, and tectonic setting of the Jorullo volcano region, Michoacán, México. J Volcanol Geotherm Res 201:97–112

    Article  Google Scholar 

  • Hasenaka T (1994) Size, distribution and magma output rates for shield volcanoes of the Michoacán-Guanajuato volcanic field, Central Mexico. J Volcanol Geotherm Res 63:13–31

    Article  Google Scholar 

  • Hasenaka T, Carmichael ISE (1985) The cinder cones of Michoacán-Guanajuato, central Mexico: their age, volume and distribution, and magma discharge rate. J Volcanol Geotherm Res 25:105–124

    Article  Google Scholar 

  • Hasenaka T, Carmichael ISE (1987) The cinder cones of Michoacán-Guanajuato, central Mexico: petrology and chemistry. J Petrol 28:241–269

    Google Scholar 

  • ITC, International Institute for Aerospace Survey and Earth Science (2001) Integrated Land and Water Information System (ILWIS) user´s guide version 3.0 Academic. Enschede, The Netherlands

  • Johnson E, Wallace P, Cashman KV, Delgado Granados HD, Kent A (2008) Magmatic volatile contents and degassing-induced crystallization at Volcán Jorullo, Mexico: implications for melt evolution and the plumbing systems of monogenetic volcanoes. Earth Planet Sci Lett 269:477–486

    Article  Google Scholar 

  • Johnson E, Wallace P, Delgado Granados HD, Manea VC, Kent A, Bindeman IN, Donegan CS (2009) Subduction-related volatile recycling and magma generation beneath central Mexico: insights from melt inclusions, oxygen isotopes and geodynamic models. J Petrol 50:1729–1764

    Article  Google Scholar 

  • Lanphere MA, Dalrymple, GB (2000) First-principles calibration of 38Ar tracers: implications for the ages of 40Ar/39Ar fluence monitors. US Geol Surv Prof Pap 1621, 10 p

  • Layer PW (2000) 40Ar/39Ar age of the El’gygytgyn impact event, Chukotka, Russia. Meteorit Planet Sci 35:591–599

    Article  Google Scholar 

  • Layer PW, Hall CM, York D (1987) The derivation of 40Ar/39Ar age spectra of single grains of hornblende and biotite by laser step heating. Geophys Res Lett 14:757–760

    Article  Google Scholar 

  • Le Maitre RW (2002) Igneous rocks: a classification and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the systematics of igneous rocks. Cambridge, Cambridge University Press, 237 p

  • Leclercq J (1885) Voyage au Mexique. Hachette et Cie, Paris, p 446

    Google Scholar 

  • Lewis-Kenedy CB, Lange RA, Hall CH, Delgado-Granados H (2005) The eruptive history of the Tequila volcanic field, western Mexico: ages, volumes, and relative proportions of lava types. Bull Volcanol 67:391–414

    Article  Google Scholar 

  • Luhr JF, Simkin T (1993) Paricutin, the volcano born in a cornfield. Geoscience Press, Phoenix, p 427

    Google Scholar 

  • McDougall I, Harrison TM (1999) Geochronology and thermochronology by the 40Ar/39Ar method, 2nd edn. Oxford University Press, New York, p 269

    Google Scholar 

  • Metcalfe SE (2006) Late Quaternary environments of the northern deserts and central Trans-Mexican Volcanic Belt of Mexico. Ann Mo Bot Gard 93:258–273

    Article  Google Scholar 

  • Molloy C, Shane P, Augustinus P (2009) Eruption recurrence rates in a basaltic volcanic field based on tephra layers in maar sediments: implications for hazards in the Auckland volcanic field. Geol Soc Am Bull 121:1666–1677

    Article  Google Scholar 

  • Moore G, Carmichael ISE (1998) The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: constraints on water content and conditions of phenocryst growth. Contrib Mineral Petrol 130:304–319

    Article  Google Scholar 

  • Morán-Zenteno DJ, Tolson G, Martínez-Serrano RG, Martiny B, Schaaf P, Silva-Romo G, Macías-Romo C, Alba-Aldave L, Hernández-Bernal MS, Solís-Pichardo GN (1999) Tertiary arc-magmatism of the Sierra Madre del Sur, Mexico, and its transition to the volcanic activity of the Trans-Mexican Volcanic Belt. J S Am Earth Sci 12:513–535

    Article  Google Scholar 

  • Newton AJ, Metcalfe S, Davies SJ, Cook G, Barker P, Telford RJ (2005) Late Quaternary volcanic record from lakes of Michoacán, central Mexico. Quat Sci Rev 24:91–104

    Article  Google Scholar 

  • Ownby SE, Lange R, Hall CM (2008) The eruptive history of the Mascota volcanic field, western Mexico: age and volume constraints on the origin of andesite among a diverse suite of lamprophyric and calc-alkaline lavas. J Volcanol Geotherm Res 177:1077–1091

    Article  Google Scholar 

  • Ownby SE, Lange RA, Hall CM, Delgado-Granados H (2011) Origin of andesite in the deep crust and eruption rates in the Tancítaro-Nueva Italia region of the central Mexican arc. Geol Soc Am Bull 123:274–294

    Article  Google Scholar 

  • Pardo M, Suárez G (1995) Shape of the subducted Rivera and Cocos Plate in southern Mexico: seismic and tectonic implications. J Geophys Res 100:12,357–12,373

    Article  Google Scholar 

  • Pasquaré G, Ferrari L, Garduño VH, Tibaldi A, Vezzoli L (1991) Geology of the central sector of the Mexican Volcanic Belt, states of Guanajuato and Michoacán. Geol Soc Am Map and Chart series MCH072, scale 1:300 000, 1 sheet, 22 p. text

  • Pérez-Vega A, François-Mas J (2009) Evaluación de los errores de modelos digitales de elevación obtenidos por cuatro métodos de interpolación. Investigaciones Geográficas 69:53–67

    Google Scholar 

  • Pioli L, Erlund E, Johnson E, Cashman K, Wallace P, Rosi M, Delgado Granados H (2008) Explosive dynamics of violent Strombolian eruptions: the eruption of Paricutin volcano 1943–1952 (Mexico). Earth Planet Sci Lett 271:359–368

    Article  Google Scholar 

  • Ponomareva V, Melekestsev I, Braitseva O, Churikova T, Pevzner M, Sulerzhitsky L (2007) Late-Pleistocene-Holocene volcanism on the Kamchatka Peninsula, Northwest Pacific Region. In: Eichelberger J, Gordeev E, Kasahara M, Izbekov P, Lees, J (eds) Volcanism and tectonics of the Kamchatka peninsula and adjacent arcs. Geophys Monogr Ser 172:165–198

    Article  Google Scholar 

  • Roberge J, Guilbaud M-N, Reyes-Luna PC (2011) Pre-eruptive volatile contents and magma evolution of Pelagatos volcano, Sierra Chichinautzin, Mexico, from olivine-hosted melt inclusions. Conference abstract, AGU fall meeting

  • Rodríguez SR, Morales-Barrera WM, Layer P, González-Mercado E (2010) A Quaternary monogenetic field in the Xalapa region, eastern Trans-Mexican volcanic belt: geology, distribution and morphology of the volcanic vents. J Volcanol Geotherm Res 197(1–4):149–166

    Article  Google Scholar 

  • Salinas S, López-Blanco J (2010) Geomorphic assessment of the debris avalanche deposit from the Jocotitlán volcano, Central Mexico. Geomorphol 123:142–153

    Article  Google Scholar 

  • Schaaf P, Morán-Zenteno D, Hernández-Bernal MS, Solís-Pichardo G, Tolson G, Köhler H (1995) Paleogene continental margin truncation in southwestern Mexico: geochronological evidence. Tectonics 14(6):1339–1350

    Article  Google Scholar 

  • Schaaf P, Stimac J, Siebe C, Macías JL (2005) Geochemical evidence for mantle origin and crustal processes in volcanic rocks from Popocatépetl and surrounding monogenetic volcanoes, central Mexico. J Petrol 46:1243–1286

    Article  Google Scholar 

  • Segerstrom K (1950) Erosion studies at Paricutin, State of Michoacán, Mexico. US Geol Surv Bull 965A, 164 p

  • Siebe C, Rodríguez-Lara V, Schaaf P, Abrams M (2004a) Radiocarbon ages of Holocene Pelado, Guespalapa, and Chichinautzin scoria cones, south of Mexico City: implications for archaeology and future hazards. Bull Volcanol 66:203–225

    Article  Google Scholar 

  • Siebe C, Rodríguez-Lara V, Schaaf P, Abrams M (2004b) Geochemistry, Sr-Nd isotope composition, and tectonic setting of Holocene Pelado, Guespalapa, and Chichinautzin scoria cones, south of Mexico City. J Volcanol Geotherm Res 130:197–226

    Article  Google Scholar 

  • Siebe C, Arana-Salinas L, Abrams M (2005) Geology and radiocarbon ages of Tláloc, Tlacotenco, Cuauhtzin, Hijo del Cuauhtzin, Teuhtli, and Ocusacayo monogenetic volcanoes in the central part of the Sierra del Chichinautzin, México. J Volcanol Geotherm Res 141:225–243

    Article  Google Scholar 

  • Siebert L, Carrasco-Núñez G (2002) Late-Pleistocene to Precolumbian behind-the-arc mafic volcanism in the eastern Mexican Volcanic Belt; implications for future hazards. J Volcanol Geotherm Res 115:179–205

    Article  Google Scholar 

  • Siebert L, Simkin T (2002–2011) Volcanoes of the world: an illustrated catalog of Holocene volcanoes and their eruptions: Smithsonian Institution, Global Volcanism Program, Digital Information Series, GVP-3 (http://www.volcano.si.edu/world/)

  • Sieron K, Siebe C (2008) Revised stratigraphy and eruption rates of Ceboruco stratovolcano and surrounding monogenetic vents (Nayarit, Mexico) from historical documents and new radiocarbon dates. J Volcanol Geotherm Res 176:241–264

    Article  Google Scholar 

  • Steiger RH, Jaeger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo and cosmochronology. Earth Planet Sci Lett 36:359–362

    Article  Google Scholar 

  • Stuiver M, Reimer PJ (1993) Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35:215–230

    Google Scholar 

  • Suter M, López-Martínez M, Quintero-Legorreta O, Carrillo-Martínez M (2001) Quaternary intra-arc extension in the central Trans-Mexican Volcanic Belt. Geol Soc Am Bull 113:693–703

    Article  Google Scholar 

  • Tibaldi A (1992) The role of transcurrent intra-arc tectonics in the configuration of a volcanic arc. Terra Nova 4:467–477

    Article  Google Scholar 

  • Urrutia-Fucugauchi J, Flores-Ruiz JH (1996) Bouguer gravity anomalies and regional crustal structure in central Mexico. Int Geol Rev 38:176–194

    Article  Google Scholar 

  • Valentine G, Gregg TKP (2008) Continental basaltic volcanoes—processes and problems. J Volcanol Geotherm Res 177:857–873

    Article  Google Scholar 

  • Valentine G, Perry FV (2006) Decreasing magmtic footprints of individual volcanoes in a waning basaltic field. Geophys Res Lett 33:L14305

    Article  Google Scholar 

  • Valentine G, Perry FV (2007) Tectonically controlled, time-predictable basaltic volcanism from a lithospheric mantle source (central Basin and Range Province, USA). Earth Planet Sci Lett 261:201–216

    Article  Google Scholar 

  • Valentine G, Perry FV, Krier DJ, Keating GN, Kelley RE, Cogbill AH (2006) Small-volume basaltic volcanoes: eruptive products and processes, and posteruptive geomorphic evolution in Crater Flat (Pleistocene), southern Nevada. Geol Soc Am Bull 118:1313–1330

    Article  Google Scholar 

  • Valentine G, Krier DJ, Perry FV, Heiken G (2007) Eruptive and geomorphic processes at the Laphrop Wells scoria cone volcano. J Volcanol Geotherm Res 161:57–80

    Article  Google Scholar 

  • Vásquez-Selem (2003) El escenario paleoambiental de la región. In: Velásquez A, Torres A, Bocco G (eds) Las enseñanzas de San Juan: Instituto Nacional de Ecología, México D.F., ISBN: 968-817-602-8, 79–93

  • Weber RM, Wallace PJ, Johnston AD (2011) Experimental insights into the formation of high-Mg basaltic andesites in the Trans-Mexican Volcanic Belt. Contrib Mineral Petrol. doi:10.1007/s00410-011-0701-9

  • Wood CA (1980) Morphometric analysis of cinder cone degradation. J Volcanol Geotherm Res 8:137–160

    Article  Google Scholar 

  • Wood CA, Kienle J (1990) Volcanoes of North America: United States and Canada. Cambridge, Cambridge University Press, 354 p

  • York D, Hall CM, Yanase Y, Hanes JA, Kenyon WJ (1981) 40Ar/39Ar dating of terrestrial minerals with a continuous laser. Geophys Res Lett 8:1136–1138

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Gabriel Valdés, Renato Castro-Govea, and Victor Hugo Garduño for participating in fieldwork. V.H. Garduño also helped in mapping some faults. Capitán Fernando Valencia is thanked for skillful and safe flights over the study area. Field and laboratory costs were defrayed from projects funded by the Consejo Nacional de Ciencia y Tecnología (CONACyT-P167231 and 152294) and the Dirección General de Asuntos del Personal Académico, UNAM (DGAPA IN-109412 and IA-101011) granted to C.S. and M.N. The Humboldt Foundation in Germany is also thanked for supporting this project. Part of the work was done as the first author completed a post-doctorate fellowship at the Instituto de Geografía, UNAM, sponsored by the Instituto de Ciencia y Tecnología del Distrito Federal (ICyTDF). L. Vázquez Selem, I. Alcántara Ayala, and others at Instituto de Geografía are thanked for their institutional support during that stay.

Editorial handling by J. White and detailed reviews by G. Valentine and S. Cronin were very helpful and are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Noëlle Guilbaud.

Additional information

Editorial responsibility: J.D.L. White

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Table DR1

Additional 40Ar/39Ar data (XLS 151 kb)

Table DR2

Dimension, composition, and age of exposed Plio-Quaternary products (XLS 97.5 kb)

Appendix: 40Ar/39Ar dating

Appendix: 40Ar/39Ar dating

Samples were crushed, washed, sieved, and hand-picked for biotite crystals (samples 63 and 102), plagioclase crystals (sample 102), and for small whole-rock chips (all samples) suitable for dating. The monitor mineral TCR-2 with an age of 27.87 Ma (Lanphere and Dalrymple 2000) was used to monitor neutron flux and calculate the irradiation parameter, J, for all samples. The samples and standards were wrapped in aluminum foil and loaded into aluminum cans of 2.5 cm diameter and 6 cm height. All samples were irradiated in position 5c of the uranium-enriched research reactor of McMaster University in Hamilton, Ontario, Canada, for 0.5 Mwatt-h. Upon their return from the reactor, the whole rock chips and grains of the monitor mineral were loaded into 2 mm diameter holes in a copper tray that was then loaded in an ultra-high vacuum extraction line. The monitors were fused and samples heated, using a 8-watt argon-ion laser following the technique described in York et al. (1981), Layer et al. (1987), and Layer (2000). Multiple holes were heated at the same time to improve the signal. Argon purification was achieved using a liquid nitrogen cold trap and a SAES Zr-Al getter at 400 °C for 20 min. The samples were analyzed in a VG-3600 mass spectrometer controlled by a Visual Basic operating program written in-house. The measured argon isotopes were corrected for system blank and mass discrimination, and for the irradiated samples, calcium, potassium, and chlorine interference reactions, following procedures outlined in McDougall and Harrison (1999). System blanks generally were 2 × 10-16 mol 40Ar and 2 × 10-18 mol 36Ar, which are five to 50 times smaller than fraction volumes. Mass discrimination was monitored by running both calibrated air shots and a zero-age glass sample. These measurements were made on a weekly to monthly basis to check for changes in mass discrimination. Two runs of each sample were done, and the results were stacked to calculate composite isochron and plateau ages using the constants of Steiger and Jaeger (1977).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guilbaud, MN., Siebe, C., Layer, P. et al. Reconstruction of the volcanic history of the Tacámbaro-Puruarán area (Michoacán, México) reveals high frequency of Holocene monogenetic eruptions. Bull Volcanol 74, 1187–1211 (2012). https://doi.org/10.1007/s00445-012-0594-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-012-0594-0

Keywords

Navigation