Skip to main content
Log in

Origins and energetics of maar volcanoes: examples from the ultrapotassic Sabatini Volcanic District (Roman Province, Central Italy)

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Maar volcanoes represent a common volcano type which is produced by the explosive interaction of magma with external water. Here, we provide information on a number of maars in the ultrapotassic Sabatini Volcanic District (SVD, Roman Province) as young as ∼90 ka. The SVD maars are characterised in terms of crater and ejecta ring morphologies, eruptive successions and magma compositions, in light of the local substrate settings, with the aim of assessing magma–water interaction conditions, eruption energetics and genetic mechanisms. Feeder magmas spanned the whole SVD differentiation trend from trachybasalts–shoshonites to phonolites. From the ejected lithic fragments from aquifer rocks, the range of depth of magma–water explosive interaction is estimated to have been mostly at ∼400–600 m below ground level, with a single occurrence of surficial interaction in palustrine–lacustrine environment. In particular, the interaction with external water may have triggered the explosive behaviour of poorly differentiated magmas, whereas it may have acted only as a late controlling factor of the degree of fragmentation and eruption style for the most differentiated magma batches during low-flux ascent in an incipiently fragmented state. Crater sizes, ejecta volumes and ballistic data allow a reconstruction of the energy budget of SVD maar-forming eruptions. Erupted tephra volumes from either monogenetic or polygenetic maars ranged 0.004–0.07 km3 during individual maar-forming eruptions, with corresponding total magma thermal energies of 8 × 1015–4 × 1017 J. Based on energy partitioning and volume balance of erupted magmas and lithic fractions vs. crater holes, we consider the different contributions of explosive excavation of the substrate vs. subsidence in forming the SVD maar craters. Following available models based on crater sizes, highly variable fractions (5–50%) of the magma thermal energies would have been required for crater excavation. It appears that subsidence may have played a major role in some SVD maars characterised by low lithic contents, whilst substrate excavation became increasingly significant with increasing degrees of aquifer fragmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Auer A, Martin U, Németh K (2007) The Fekete-hegy (Balaton Highland Hungary) “soft-substrate” and “hard-substrate” maar volcanoes in an aligned volcanic complex—implications for vent geometry, subsurface stratigraphy and the palaeoenvironmental setting. J Volcanol Geotherm Res 159:225–245

    Article  Google Scholar 

  • Austin-Erickson A, Büttner R, Dellino P, Ort MH, Zimanowski B (2008) Phreatomagmatic explosions of rhyolitic magma: experimental and field evidence. J Geophys Res 113:B11201. doi:10.1029/2008JB005731

    Article  Google Scholar 

  • Barberi F, Navarro JM, Rosi M, Santacroce R, Sbrana A (1988) Explosive interaction of magma with ground water: insights from xenoliths and geothermal drillings. Rend Soc Ital Mineral Petrol 43:901–926

    Google Scholar 

  • Boni C, Bono P, Capelli G (1986) Schema idrogeologico dell’Italia Centrale. Mem Soc Geol It 35:991–1012

    Google Scholar 

  • Büttner R, Dellino P, La Volpe L, Lorenz V, Zimanowski B (2002) Thermohydraulic explosions in phreatomagmatic eruptions as evidenced by the comparison between pyroclasts and products from molten fuel coolant interaction experiments. J Geophys Res 107:2277–2290

    Article  Google Scholar 

  • Campobasso C, Cioni R, Salvati L, Sbrana A (1994) Geology and paleogeographic evolution of a peripheral sector of the Vico and Sabatini volcanic complex, between Civita Castellana and Mazzano Romano (Latium, Italy). Mem Descr Carta Geol It 49:277–290

    Google Scholar 

  • Campos Venuti M, Rossi RL (1996) Depositional facies in the Firiplaka rhyolitic tuff ring, Milos Island (Cyclades, Greece). Acta Vulcanol 8(2):47–63

    Google Scholar 

  • Carrasco-Núñez G, Ort MH, Romero C (2007) Evolution and hydrological conditions of a maar volcano (Atexcac crater, eastern Mexico). J Volcanol Geotherm Res 159:179–197

    Article  Google Scholar 

  • Cas RAF, Wright JV (1987) Volcanic successions modern and ancient. Allen and Unwin, London, p 528

    Book  Google Scholar 

  • Cioni R, Laurenzi MA, Sbrana A, Villa IM (1993) 40Ar/39Ar chronostratigraphy of the initial activity in the Sabatini volcanic complex (Italy). Boll Soc Geol It 112:251–263

    Google Scholar 

  • Civitelli G, Corda L (1993) The allochthonous succession. In: Di Filippo M (ed) Sabatini volcanic complex. Quad Ric Sci, vol 114. Progetto Finalizzato Geodinamica CNR, Rome, pp 19–28

  • Colucci S, Palladino DM, Simei S, Sottili G (2010) Magmatic vs. hydromagmatic fragmentation and its bearing on the origin of widely dispersed ash deposits. Abs Cities on Volcanoes 6, 31 May–4 June 2010, Puerto de la Cruz, Tenerife, Spain, p 23

  • Conticelli S, Francalanci L, Manetti P, Cioni R, Sbrana A (1997) Petrology and geochemistry of the ultrapotassic rocks from the Sabatini Volcanic District, central Italy: the role of evolutionary processes on the genesis of variably enriched alkaline magmas. J Volcanol Geotherm Res 75:107–136

    Article  Google Scholar 

  • Cundari A (1979) Petrogenesis of leucite-bearing lavas in the Roman volcanic region, Italy. The Sabatini Lavas. Contrib Mineral Petrol 70:9–21

    Article  Google Scholar 

  • De Astis G, Pappalardo L, Piochi M (2004) Procida volcanic history: new insights into the evolution of the Phlegrean Volcanic District (Campanian region, Italy). Bull Volcanol 66:622–641

    Article  Google Scholar 

  • Dellino P, La Volpe L (1995) Fragmentation versus transportation mechanisms in the pyroclastic sequence of Monte Pilato-Rocche Rosse (Lipari, Italy). J Volcanol Geotherm Res 64:211–231

    Article  Google Scholar 

  • Dellino P, La Volpe L (1996) Cluster analysis on ash particles morphology features to discriminate fragmentation dynamics in explosive eruptions. Acta Vulcanol 8–1:31–39

    Google Scholar 

  • de Rita D, Sposato A (1986) Correlazione tra eventi esplosivi e assetto strutturale del substrato sedimentario nel complesso vulcanico Sabatino. Mem Soc Geol It 35:727–733

    Google Scholar 

  • de Rita D, Zanetti G (1986) I centri esplosivi di Baccano e Stracciappe (Sabatini orientali, Roma): analogie e differenze della modellistica esplosiva in funzione del grado di interazione acqua/magma. Mem Soc Geol It 35:689–697

    Google Scholar 

  • de Rita D, Funiciello R, Corda L, Sposato A, Rossi U (1993) Volcanic units. In: Di Filippo M (ed) Sabatini volcanic complex. Quad Ric Sci, vol 114. Progetto Finalizzato Geodinamica CNR, Rome, pp 33–79

  • Devine JD, Gardner JE, Brack HP, Layne GD, Rutherford MJ (1995) Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses. Am Mineral 80:319–328

    Google Scholar 

  • Di Filippo M, Toro B (1993) Gravimetric study of Sabatini area. In: Di Filippo M (ed) Sabatini volcanic complex. Quad Ric Sci, vol 114. Progetto Finalizzato Geodinamica CNR, Rome, pp 95–99

  • Di Vito MA, Arienzo I, Braia G, Civetta L, D'Antonio M, Di Renzo V, Orsi G (2010) The Averno 2 fissure eruption: a recent small-size explosive event at the Campi Flegrei Caldera (Italy). Bull Volcanol 73:295–320. doi:10.1007/s00445-010-0417-0

    Article  Google Scholar 

  • Dolfi D, Palladino DM, Trigila R, Zanon V (2011) Aspetti chimico-petrografici e geocronologici delle vulcaniti della Media Valle Latina. In: Centamore E (ed) Note Illustrative della Carta Geologica d’Italia, Foglio 402 “Ceccano” (in press)

  • Ernst GGJ, Carey SN, Bursik MI, Sparks RSJ (1996) Sedimentation from turbulent jets and plumes. J Geophys Res 101:5575–5589

    Article  Google Scholar 

  • Fagents SA, Wilson L (1993) Explosive volcanic eruptions, VII. The ranges of pyroclasts ejected in transient volcanic explosions. Geophys Int 113:359–370

    Article  Google Scholar 

  • Fagents SA, Wilson L (1996) Numerical modeling of ejecta dispersal from transient volcanic explosions on Mars. Icarus 123:284–295

    Article  Google Scholar 

  • Foley SF, Venturelli G, Green DH, Toscani L (1987) The ultrapotassic rocks: characteristics, classifications and constraints for petrogenetic models. Earth Sci Rev 24:81–134

    Article  Google Scholar 

  • Franzini M, Leoni M, Saitta M (1972) A simple method to evaluate the matrix effects in X-ray fluorescence analysis. Spectrometry 1:151–154

    Google Scholar 

  • Funiciello R, Mariotti G, Parotto M, Preite-Martinez M, Tecce F, Toneatti R, Turi B (1979) Geology, mineralogy and stable isotope geochemistry of the Cesano geothermal field (Sabatini Mts. Volcanic system, Northern Latium, Italy). Geothermics 8:55–73

    Article  Google Scholar 

  • Gaeta M, Di Rocco T, Freda C (2009) Carbonate assimilation in open magmatic systems: the role of melt-bearing skarns and cumulate-forming processes. J Petrol 50:361–385

    Article  Google Scholar 

  • Giaccio B, Sposato A, Gaeta M, Marra F, Palladino DM, Taddeucci J, Barbieri M, Messina P, Rolfo MF (2007) Mid-distal occurrences of the Albano Maar pyroclastic deposits and their relevance for reassessing the eruptive scenarios of the most recent activity at the Colli Albani Volcanic District, Central Italy. Quat Int 171–172:160–178

    Article  Google Scholar 

  • Giardini M (2007) Late Quaternary vegetation history at Stracciacappa (Rome, central Italy). Vegetation History and Archaeobotany 16(4):301–316

    Article  Google Scholar 

  • Goto A, Taniguchi H, Yoshida M, Ohba T, Oshima H (2001) Effect of explosions energy and depth to the formation of blast wave and crater: field explosion experiment for the understanding of volcanic explosion. Geophys Res Lett 28:4287–4290

    Article  Google Scholar 

  • Head JW, Sparks RSJ, Bryan WB, Walker GPL, Greely R, Whitford-Stark JL, Guest JE, Wood CA, Shultz PH, Carr MH (1981) Distribution and morphology of basalt deposits on planets. In: Project BVS (ed) Basaltic volcanism on the terrestrial planets. Pergamon, New York, pp 701–800

    Google Scholar 

  • Heiken G, Wohletz K (1985) Volcanic ash. University of California Press, Berkeley, 246 pp

    Google Scholar 

  • Houghton BF, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 51:451–462

    Article  Google Scholar 

  • Houghton BF, Wilson CJN, Rosenberg MD, Smith IEM, Parker RJ (1996) Mixed deposits of complex magmatic and phreatomagmatic volcanism: an example from Crater Hill, Auckland, New Zealand. Bull Volcanol 58:59–66

    Article  Google Scholar 

  • Houghton BF, Wilson CJN, Smith RT, Gilbert JS (2000) Phreatoplinian eruptions. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic, San Diego, pp 513–525

    Google Scholar 

  • Kano K, Ohguchi T (2009) Intra-crater deposits of the Toga tuff ring, Oga Peninsula, NE Japan. Sed Geol 220:204–217

    Article  Google Scholar 

  • Kano K, Ohguchi T, Hayashi S, Uto K, Danhara T (2002) Toga volcano: an alkali-rhyolite tuff-ring in the western end of Oga Peninsula, NE Japan. Bull Volcanol Soc Japan 47(5):373–396

    Google Scholar 

  • Karner DB, Marra F, Renne P (2001) The history of the Monti Sabatini and Alban Hills volcanoes: groundwork for assessing volcanic–tectonic hazards for Rome. J Volcanol Geotherm Res 107:185–219

    Article  Google Scholar 

  • Laurenzi MA, Villa IM (1987) 40Ar/39Ar chronostratigraphy of the Vico ignimbrites. Per Mineral 56:285–293

    Google Scholar 

  • Lorenz V (1971) An investigation of volcanic depressions. Part IV. Origin of Hole-in-the-Ground, a maar in Central Oregon (Geological, geophysical and energy investigations). Prog Rep NGR-38-003-012, NASA, Houston, TX, 113 pp

  • Lorenz V (1973) On the formation of maars. Bull Volcanol 37:183–204

    Article  Google Scholar 

  • Lorenz V (1986) On the growth of maars and diatremes and its relevance to the formation of tuff-rings. Bull Volcanol 48:265–274

    Article  Google Scholar 

  • Lorenz V (2003) Maar–diatreme volcanoes, their formation, and their setting in hard-rock or soft-rock environments. Geolines—J Geol Inst AS Czech Republic 15:72–83

    Google Scholar 

  • Lorenz V (2007) Syn- and posteruptive hazards of maar–diatreme volcanoes. J Volcanol Geotherm Res 159:285–312

    Article  Google Scholar 

  • Mariotti G (1993) Basal carbonate succession. In: Di Filippo M (ed) Sabatini volcanic complex. Quad Ric Sci, vol 114. Progetto Finalizzato Geodinamica CNR, Rome, pp 11–18

  • Masotta M, Gaeta M, Gozzi F, Marra F, Palladino DM, Sottili G (2010) H2O- and temperature-zoning in magma chambers: the example of the Tufo Giallo della Via Tiberina eruptions (Sabatini Volcanic District, central Italy). Lithos 118:119–130

    Article  Google Scholar 

  • Mastin LG (1991) The roles of magma and groundwater in the phreatic eruptions at Inyo Craters, Long Valley Caldera, California. Bull Volcanol 53:579–596

    Article  Google Scholar 

  • Mastrolorenzo G, Brachi L, Canzanella A (2001) Vesicularity of various types of pyroclastic deposits of Campi Flegrei volcanic field: evidence of analogies in magma rise and vesiculation mechanisms. J Volcanol Geotherm Res 109:41–53

    Article  Google Scholar 

  • Moore G, Vennemann T, Carmichael ISE (1998) An empirical model for the solubility of H2O in magmas to 3 kilobars. Am Mineral 83:36–42

    Google Scholar 

  • Nappi G, Mattioli M (2003) Evolution of the Sabatinian Volcanic District (central Italy) as inferred by stratigraphic successions of its northern sector and geochronological data. Per Mineral 72:79–102

    Google Scholar 

  • Németh K (2010) Monogenetic volcanic fields: origin, sedimentary record, and relationship with polygenetic volcanism. Geol Soc Am Spec Pap 470:43–66

    Article  Google Scholar 

  • Németh K, Cronin S, Haller M, Brenna M, Csillag G (2010) Modern analogues for Miocene to Pleistocene alkali basaltic phreatomagmatic fields in the Pannonian Basin: “soft-substrate” to “combined” aquifer controlled phreatomagmatism in intraplate volcanic fields. Centr Eur J Geosci 2(3):339–361

    Article  Google Scholar 

  • Ollier CD (1967) Maars: their characteristics, varieties and definition. Bull Volcanol 31:45–75

    Article  Google Scholar 

  • Palladino DM, Taddeucci J (1998) The basal ash deposit of the Sovana Eruption (Vulsini Volcanoes, central Italy): the product of a dilute pyroclastic density current. J Volcanol Geotherm Res 87:233–254

    Article  Google Scholar 

  • Palladino DM, Gaeta M, Marra F (2001) A large K-foiditic hydromagmatic eruption from the early activity of the Alban Hills VolcanicDistrict (Italy). Bull Volcanol 63:345–359

    Article  Google Scholar 

  • Palladino DM, Simei S, Kyriakopoulos K (2008) On magma fragmentation by conduit shear stress: evidence from the Kos Plateau Tuff, Aegean Volcanic Arc. J Volcanol Geotherm Res 178:807–817

    Article  Google Scholar 

  • Palladino DM, Simei S, Sottili G, Trigila R (2010) Integrated approach for the reconstruction of stratigraphy and geology of Quaternary volcanic terrains: an application to the Vulsini Volcanoes (central Italy). In Groppelli G, Viereck L (eds) Stratigraphy and geology in volcanic areas. Geol Soc Am Spec Pap 464, pp 66–84

  • Peccerillo A, Federico M, Barbieri M, Brilli M, Wu TW (2010) Interaction between ultrapotassic magmas and carbonate rocks: evidence from geochemical and isotopic (Sr, Nd, O) compositions of granular lithic clasts from the Alban Hills Volcano, Central Italy. Geochim Cosmochim Acta 74:2999–3022

    Article  Google Scholar 

  • Ross P-S, White JDL, Zimanowski B, Büttner R (2008) Multiphase flow above explosion sites in debris-filled volcanic vents: insights from analogue experiments. J Volcanol Geotherm Res 178:104–112

    Article  Google Scholar 

  • Ross P-S, Delpit S, Haller MJ, Németh K, Corbella H (2011) Influence of the substrate on maar–diatreme volcanoes—an example of a mixed setting from the Pali Aike volcanic field, Argentina. J Volcanol Geotherm Res 201:253–271. doi:10.1016/j.jvolgeores.2010.07.018

    Article  Google Scholar 

  • Sahagian DL, Proussevitch AA (1998) 3D particle size distributions from 2D observations: stereology for natural applications. J Volcanol Geotherm Res 84:173–196

    Article  Google Scholar 

  • Sato H, Taniguchi H (1997) Relationship between crater size and ejecta volume of recent magmatic and phreato-magmatic eruptions: implications for energy partitioning. Geophys Res Lett 24:205–208

    Article  Google Scholar 

  • Scherillo A (1941) Studi su alcuni tufi gialli della regione sabazia orientale. Per Mineral 12:381–417

    Google Scholar 

  • Self S, Kienle J, Huot J-P (1980) Ukinrek Maars, Alaska. II. Deposits and formation of the 1977 craters. J Volcanol Geotherm Res 7:39–65

    Article  Google Scholar 

  • Sheridan MF, Wohletz KH (1983) Hydrovolcanism: basic considerations and review. J Volcanol Geotherm Res 17:1–29

    Article  Google Scholar 

  • Shimozuru D (1968) Discussion on the energy partition of volcanic eruption. Bull Volcanol 32:383–394

    Article  Google Scholar 

  • Sohn YK, Cough SK (1989) Depositional processes of the Suwolbong tuff ring, Cheju Island (Korea). Sedimentology 36:837–855

    Article  Google Scholar 

  • Sottili G, Palladino DM, Zanon V (2004) Plinian activity during the early eruptive history of the Sabatini Volcanic District, Central Italy. J Volcanol Geotherm Res 135:361–379

    Article  Google Scholar 

  • Sottili G, Taddeucci J, Palladino DM, Gaeta M, Scarlato P, Ventura G (2009) Sub-surface dynamics and eruptive styles of maars in the Colli Albani Volcanic District, Central Italy. J Volcanol Geotherm Res 180:189–202

    Article  Google Scholar 

  • Sottili G, Palladino DM, Marra F, Jicha B, Karner DB, Renne P (2010a) Geochronology of the most recent activity in the Sabatini Volcanic District, Roman Province, central Italy. J Volcanol Geotherm Res 196:20–30

    Article  Google Scholar 

  • Sottili G, Taddeucci J, Palladino DM (2010b) Constraints on magma–wall rock thermal interaction during explosive eruptions from textural analysis of cored bombs. J Volcanol Geotherm Res 192:27–34

    Article  Google Scholar 

  • Sparks RSJ, Walker GPL (1977) The significance of vitric-enriched air-fall ashes associated with crystal-enriched ignimbrites. J Volcanol Geotherm Res 2:329–341

    Article  Google Scholar 

  • Taddeucci J, Sottili G, Palladino DM, Ventura G, Scarlato P (2010) A note on maar eruption energetics: current models and their application. Bull Volcanol 72:75–83

    Article  Google Scholar 

  • Trigila R, Battaglia M, Manga M (2007) An experimental facility for investigating hydromagmatic eruptions at high-pressure and high-temperature with application to the importance of magma porosity for magma–water interaction. Bull Volcanol 69:365–372

    Article  Google Scholar 

  • Valentine GA, Shufelt NL, Hintz ARL (2011) Models of maar volcanoes, Lunar Crater (Nevada, USA). Bull Volcanol. doi:10.1007/s00445-011-0451-6

  • Walker GPL, Croasdale R (1972) Characteristics of some basaltic pyroclastics. Bull Volcanol 35:303–317

    Article  Google Scholar 

  • White JDL, Houghton B (2000) Surtseyan and related phreatomagmatic eruptions. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic, San Diego, pp 495–513

    Google Scholar 

  • White JDL, Ross P-S (2011) Maar–diatreme volcanoes: a review. J Volcanol Geotherm Res 201:1–29. doi:10.1016/j.jvolgeores.2011.01.010

    Article  Google Scholar 

  • Wohletz KH (1986) Explosive magma–water interaction: thermodynamics, explosive mechanisms, and field studies. Bull Volcanol 48:248–264

    Article  Google Scholar 

  • Wohletz KH (2002) Water/magma interaction: some theory and experiments on peperite formation. J Volcanol Geotherm Res 114:19–35

    Article  Google Scholar 

  • Wohletz KH (2003) Water/magma interaction: physical considerations for the deep submarine environment. In: White JDL, Smellie JL, Clague DA (eds) Explosive subaqueous volcanism. American Geophysical Union, Washington, pp 25–50

    Chapter  Google Scholar 

  • Wohletz KH, McQueen RG (1984) Volcanic and stratospheric dust-like particles produced by experimental water–melt interactions. Geology 12:591–594

    Article  Google Scholar 

  • Wohletz KH, Sheridan MF (1983) Hydrovolcanic explosions II: evolution of basaltic tuff rings and tuff cones. Am J Sci 283:385–413

    Article  Google Scholar 

  • Yokoo A, Taniguchi H, Goto A, Oshima H (2002) Energy and depth of Usu 2000 phreatic explosions. Geophys Res Lett 29:2195. doi:10.1029/2002GL015728

    Article  Google Scholar 

  • Yokoyama I, de la Cruz-Reyna S, Espindola JM (1992) Energy partition in the 1982 eruption of El Chichon volcano, Chiapas, Mexico. J Volcanol Geotherm Res 51:1–21

    Article  Google Scholar 

  • Zimanowski B, Büttner R (2003) Phreatomagmatic explosions in subaqueous volcanism. In: White JDL, Smellie JL, Clague DA (eds) Explosive subaqueous volcanism. American Geophysical Union, Washington, pp 51–60

    Chapter  Google Scholar 

  • Zimmer BW, Riggs NR, Carrasco-Núñez G (2010) Evolution of tuff ring–dome complex: the case study of Cerro Pinto, eastern Trans-Mexican Volcanic Belt. Bull Volcanol 72:1223–1240. doi:10.1007/s00445-010-0391-6

    Article  Google Scholar 

Download references

Acknowledgements

We thank Greg Valentine, Karoly Németh, the Editor Michael Manga and the Executive Editor James White for constructive journal reviews of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo M. Palladino.

Additional information

Editorial responsibility: M. Manga

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sottili, G., Palladino, D.M., Gaeta, M. et al. Origins and energetics of maar volcanoes: examples from the ultrapotassic Sabatini Volcanic District (Roman Province, Central Italy). Bull Volcanol 74, 163–186 (2012). https://doi.org/10.1007/s00445-011-0506-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-011-0506-8

Keywords

Navigation