Skip to main content

Advertisement

Log in

A note on maar eruption energetics: current models and their application

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Hydromagmatic eruptions convert thermal into mechanical energy via the expansion of ground- and/or surface-water. Several models address the energetics of these eruptions based on different physical-volcanological approaches. Here we test different models with two case studies in the Colli Albani Volcanic District (central Italy): the monogenetic Prata Porci and the polygenetic Albano maars. Test results are mutually consistent, and show cumulative mechanical energy releases on the order of 1015–1017 J for single maars. The fraction of thermal energy turned into mechanical ranges from 0.45 (as calculated from the theoretical maximum mechanical energy), through 0.1 (calculated from country rock fragmentation, crater formation and ballistic ejection), to 0.03 (derived from magma fragmentation by thermohydraulic explosions). It appears that the energy released during the most intense hydromagmatic events may account for a dominant fraction of the total mechanical energy released during the whole maar eruptive histories. Finally, we consider the role of magmatic explosive activity intervening during maar eruptions in causing departures from predictions of the models evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andronico D, Branca S, Calvari S, Burton M, Caltabiano T, Corsaro RA, Del Carlo P, Garfì G, Lodato L, Miraglia L, Murè F, Neri M, Pecora E, Pompilio M, Salerno G, Spampinato L (2005) A multi-disciplinary study of the 2002–03 Etna eruption: insights into a complex plumbing system. Bull Volcanol 67:314–330

    Article  Google Scholar 

  • Anzidei M, Carapezza ML, Esposito A, Giordano G, Lelli M, Tarchini L (2008) The Albano Maar Lake high resolution bathymetry and dissolved CO2 budget (Colli Albani volcano, Italy): constrains to hazard evaluation. J Volcanol Geotherm Res 171:258–268

    Article  Google Scholar 

  • Atkinson BK (ed) (1987) Fracture mechanics of rock. Academic Press Geology Series, London

    Google Scholar 

  • Büttner R, Zimanowski B (1998) Physics of thermohydraulic explosions. Phys Rev E 57:5726–5729

    Article  Google Scholar 

  • Büttner R, Dellino P, La Volpe L, Lorenz V, Zimanowski B (2002) Thermohydraulic explosions in phreatomagmatic eruptions as evidenced by the comparison between pyroclasts and products from Molten Fuel Coolant interaction experiments. J Geophys Res 107:2277. doi:10.1029/2001JB000511

    Article  Google Scholar 

  • Büttner R, Dellino P, Raue H, Sonder I, Zimanowski B (2006) Stress-induced brittle fragmentation of magmatic melts: theory and experiments. J Geophys Res 111:B08204. doi:10.1029/20055JB003958

    Article  Google Scholar 

  • Chester JS, Chester FM, Kronenberg AK (2005) Fracture surface energy of the Punchbowl fault, San Andreas system. Nature 437:133–136

    Article  Google Scholar 

  • Crosta GB, Frattini P, Fusi N (2007) Fragmentation in the Val Pola rock avalanche, Italian Alps. J Geophys Res 112:F01006. doi:10.1029/2005JF000455

    Article  Google Scholar 

  • Ernst GGJ, Carey SN, Bursik MI, Sparks RSJ (1996) Sedimentation from turbulent jets and plumes. J Geophys Res 101:5575–5589

    Article  Google Scholar 

  • Freda C, Gaeta M, Karner DB, Marra F, Renne PR, Taddeucci J, Scarlato P, Christensen J, Dallai L (2006) Eruptive history and petrologic evolution of the Albano multiple maar (Alban Hills, Central Italy). Bull Volcanol 68:567–591

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212

    Article  Google Scholar 

  • Giaccio B, Sposato A, Gaeta M, Marra F, Palladino DM, Taddeucci J, Barbieri M, Messina P, Rolfo MF (2007) Mid-distal occurrences of the Albano Maar pyroclastic deposits and their relevance for reassessing the eruptive scenarios of the most recent activity at the Colli Albani Volcanic District, Central Italy. Quat Int 171:160–178

    Article  Google Scholar 

  • Goto A, Taniguchi H, Yoshida M, Ohba T, Oshima H (2001) Effect of explosions energy and depth to the formation of blast wave and crater: field explosion experiment for the understanding of volcanic explosion. Geophys Res Lett 28:4287–4290

    Article  Google Scholar 

  • Kestin J, Sengers JV, Kamgar-Parsi B, Levelt Sengers JMH (1984) Thermophysical properties of fluid H2O. J Phys Chem Ref Data 13:175–183

    Article  Google Scholar 

  • Lorenz V (1986) On the growth of maars and diatremes and its relevance to the formation of tuff-rings. Bull Volcanol 48:265–274

    Article  Google Scholar 

  • Marra F, Freda C, Scarlato P, Taddeucci J, Karner DB, Renne PR, Gaeta M, Palladino DM, Trigila R, Cavarretta G (2003) Post-caldera activity in the Alban Hills Volcanic District (Italy): 40Ar/39Ar geochronology and insights into magma evolution. Bull Volcanol 65:227–247

    Article  Google Scholar 

  • Marra F, Taddeucci J, Freda C, Marzocchi W, Scarlato P (2004) Recurrence of volcanic activity along the Roman Comagmatic province (Tyrrhenian margin of Italy) and its tectonic significance. Tectonics 23:TC4013. doi:10.1029/2003TC001600

    Article  Google Scholar 

  • Mastin LG (1995) Thermodynamics of gas and steam-blast eruptions. Bull Volcanol 57:85–98

    Google Scholar 

  • Mastin LG (2007) Generation of fine hydromagmatic ash by growth and disintegration of glassy rinds. J Geophys Res 112:B02203. doi:10.1029/2005JB003883

    Article  Google Scholar 

  • Mastin LG, Ghiorso MS (2000) A numerical program for steady-state flow of magma-gas mixtures through vertical eruptive conduits. US Geol Surv Open File Rep 209:1–53

    Google Scholar 

  • Mastin LG, Spieler O, Downey WS (2009) An experimental study of hydromagmatic fragmentation through energetic, non-explosive magma-water mixing. J Volcanol Geotherm Res 180:161–170

    Article  Google Scholar 

  • Palladino DM, Gaeta M, Marra F (2001) A large k-foiditic hydromagmatic eruption from the early activity of the Alban Hills Volcanic District (Italy). Bull Volcanol 63:345–359

    Article  Google Scholar 

  • Pyle DM (1995) Mass and energy budgets of explosive volcanic eruptions. Geophys Res Lett 22:563–566

    Article  Google Scholar 

  • Raue H (2004) A new model for the fracture energy budget of phreatomagmatic explosions. J Volcanol Geotherm Res 129:99–108

    Article  Google Scholar 

  • Ross P-S, White JDL (2006) Debris jets in continental phreatomagmatic volcanoes: a field study of their subterranean deposits in the Coombs Hills vent complex, Antarctica. J Volcanol Geotherm Res 149:62–84

    Article  Google Scholar 

  • Ross P-S, White JDL, Zimanowski B, Büttner R (2008) Rapid injection of particles and gas into non-fluidized granular material: volcanological implications. Bull Volcanol 70:1151–1168

    Article  Google Scholar 

  • Sato H, Taniguchi H (1997) Relationship between crater size and ejecta volume of recent magmatic and phreato-magmatic eruptions: implications for energy partitioning. Geophys Res Lett 24:205–208

    Article  Google Scholar 

  • Shimozuru D (1968) Discussion on the energy partition of volcanic eruption. Bull Volcanol 32:383–394

    Article  Google Scholar 

  • Sottili G, Taddeucci J, Palladino DM, Gaeta M, Scarlato P, Ventura G (2009) Sub-surface dynamics and eruptive styles of maars in the Colli Albani Volcanic District, Central Italy. J Volcanol Geotherm Res 180:189–202

    Article  Google Scholar 

  • Sparks RSJ, Walker GPL (1977) The significance of vitric-enriched air-fall ashes associated with crystal-enriched ignimbrites. J Volcanol Geotherm Res 2:329–341

    Article  Google Scholar 

  • Trigila R, Agosta E, Currado C, De Benedetti AA, Freda C, Gaeta M, Palladino DM, Rosa C (1995) Petrology. In: Trigila R (ed) The volcano of the Alban Hills. Tipografia SGS, Rome, pp 95–165

  • Wohletz KH (1986) Explosive magma-water interaction: thermodynamics, explosive mechanisms, and field studies. Bull Volcanol 48:248–264

    Article  Google Scholar 

  • Wohletz KH (2002) Water/magma interaction: some theory and experiments on peperite formation. J Volcanol Geotherm Res 114:19–35

    Article  Google Scholar 

  • Wohletz KH (2003) Water/magma interaction: physical considerations for the deep submarine environment. Am Geophys Union Geophys Mon 140:25–49

    Google Scholar 

  • Wohletz KH, McQueen RG (1984) Volcanic and stratospheric dust-like particles produced by experimental water-melt interactions. Geology 12:591–594

    Article  Google Scholar 

  • Yokoo A, Taniguchi H, Goto A, Oshima H (2002) Energy and depth of Usu 2000 phreatic explosions. Geophys Res Lett 29:2195. doi:10.1029/2002GL015728

    Article  Google Scholar 

  • Yokoyama I, de la Cruz-Reyna S, Espindola JM (1992) Energy partition in the 1982 eruption of El Chichon volcano, Chiapas, Mexico. J Volcanol Geotherm Res 51:1–21

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Italian Dipartimento della Protezione Civile, in the frame of the 2004–2006 Agreement with Istituto Nazionale di Geofisica e Vulcanologia—INGV, project V3_1, and by the Progetto FIRB-MIUR “Sviluppo Nuove Tecnologie per la Protezione e Difesa del Territorio dai Rischi Naturali”. Danke schoen to B. Zimanowski for useful comments on an early version of the manuscript. We thank P. Dellino and L. Mastin for helpful reviews, and Associated Editor J.D.L. White for additional, precious suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacopo Taddeucci.

Additional information

Editorial responsibility: J. White

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taddeucci, J., Sottili, G., Palladino, D.M. et al. A note on maar eruption energetics: current models and their application. Bull Volcanol 72, 75–83 (2010). https://doi.org/10.1007/s00445-009-0298-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-009-0298-2

Keywords

Navigation