Skip to main content
Log in

The ~4-ka Rungwe Pumice (South-Western Tanzania): a wind-still Plinian eruption

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The ~4-ka trachytic Rungwe Pumice (RP) deposit from Rungwe Volcano in South-Western Tanzania is the first Plinian-style deposit from an African volcano to be closely documented focusing on its physical characterization. The RP is a mostly massive fall deposit with an inversely graded base. Empirical models suggest a maximum eruption column height H T of 30.5–35 km with an associated peak mass discharge rate of 2.8–4.8 × 108 kg/s. Analytical calculations result in H T values of 33 ± 4 km (inversion of TEPHRA2 model on grain size data) corresponding to mass discharge ranging from 2.3 to 6.0 × 108 kg/s. Lake-core data allow extrapolation of the deposit thinning trend far beyond onland exposures. Empirical fitting of thickness data yields volume estimates between 3.2 and 5.8 km3 (corresponding to an erupted mass of 1.1–2.0 × 1012 kg), whereas analytical derivation yields an erupted mass of 1.1 × 1012 kg (inversion of TEPHRA2 model). Modelling and dispersal maps are consistent with nearly no-wind conditions during the eruption. The plume corner is estimated to have been ca. 11–12 km from the vent. After an opening phase with gradually increasing intensity, a high discharge rate was maintained throughout the eruption, without fountain collapse as is evidenced by a lack of pyroclastic density current deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Barker P, Williamson D, Gasse F, Gibert E (2003) Climatic and volcanic forcing revealed in a 50,000-year diatom record from Lake Massoko, Tanzania. Quat Res 60:368–376

    Article  Google Scholar 

  • Barker PA, Leng MJ, Gasse F, Huang Y (2007) Century-to-millennial scale climatic variability in Lake Malawi revealed by isotope records. Earth Planet Sci Lett 261:93–103

    Article  Google Scholar 

  • Barry SL, Filippi ML, Talbot MR, Johnson TC (2002) Sedimentology and geochronology of Late Pleistocene and Holocene sediments from Northern Lake Malawi. In: Odada EO, Olaga DO (eds) The East African great lakes: limnology, palaeolimnology and biodiversity. Kluwer Academic Publishers, Dordrecht, pp 369–391

    Google Scholar 

  • Bonadonna C, Houghton BF (2005) Total grain size distribution and volume of tephra-fall deposits. Bull Volcanol 67:441–456

    Article  Google Scholar 

  • Bonadonna C, Phillips JC (2003) Sedimentation from strong volcanic plumes. J Geophys Res 108:2340. doi:10.1029/2002JB002034

    Article  Google Scholar 

  • Bonadonna C, Ernst GGJ, Sparks RSJ (1998) Thickness variations and volume estimates of tephra fall deposits: the importance of particle Reynolds number. J Volcanol Geotherm Res 81:173–187

    Article  Google Scholar 

  • Bonadonna C, Connor CB, Houghton BF, Connor L, Byrne M, Laing A, Hincks TK (2005) Probabilistic modeling of tephra dispersal: hazard assessment of a multiphase rhyolitic eruption at Tarawera, New Zealand. J Geophys Res 110:B03203. doi:10.1029/2003JB002896

    Article  Google Scholar 

  • Bursik MI, Sparks RSJ, Gilbert JS, Carey SN (1992) Sedimentation of tephra by volcanic plumes: I. Theory and its comparison with a study of the Fogo A Plinian deposit, Sao Miguel (Azores). Bull Volcanol 54:329–344

    Article  Google Scholar 

  • Carey SN, Sigurdsson H (1989) The intensity of Plinian eruptions. Bull Volcanol 51:28–40

    Article  Google Scholar 

  • Carey S, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125

    Article  Google Scholar 

  • Cas RAF, Wright JV (1987) Volcanic successions, modern and ancient: a geological approach to processes, products and successions. Unwin Hyman Ltd, London

    Google Scholar 

  • Connor LJ, Connor CB (2006) Inversion is the key to dispersion: understanding eruption dynamics by inverting tephra fallout. In: Mader H, Coles SG, Connor CB, Connor LJ (eds) Statistics in volcanology. Geological Society, London, pp 231–242

    Google Scholar 

  • Delvaux D (2001) Tectonic and palaeostress evolution of the Tanganyika-Rukwa-Malawi rift segment, East African rift System. In: Ziegler PA, Cavazza W, Robertson AHF, Crasquin-Soleau S (eds), PeriTethyan Rift/Wrench Basins and Passive Margins, Mem Mus Natl Hist Nat, PeriTethys Mem 6, Paris

  • Delvaux D, Levi K, Kajara R, Sarota J (1992) Cenozoic palaeostress and kinematic evolution of the Rukwa-North Malawi rift valley (East African Rift System). Bull Cent Rech Explor-Prod Elf Aquitaine 16:383–406

    Google Scholar 

  • Di Matteo V, Carroll MR, Behrens H, Vetere F, Brooker RA (2004) Water solubility in trachytic melts. Chem Geol 213:187–196

    Article  Google Scholar 

  • Durant AJ, Rose WI, Sarna-Wojcicki AM, Carey S, Volentik ACM (2009) Hydrometeor-enhanced tephra sedimentation: constraints from the 18 May 1980 eruption of Mount St. Helens (USA). J Geophys Res 114:B03204. doi:10.1029/2008JB005756

    Article  Google Scholar 

  • Ebinger CJ, Deino AL, Drake RE, Tesha AL (1989) Chronology of volcanism and rift basin propagation—Rungwe Volcanic Province, East Africa. J Geophys Res 94:15785–15803

    Article  Google Scholar 

  • Ebinger CJ, Deino AL, Tesha AL, Becker T, Ring U (1993) Tectonic controls on rift basin morphology—evolution of the northern Malawi (Nyasa) Rift. J Geophys Res 98:17821–17836

    Article  Google Scholar 

  • Fontijn K, Delvaux D, Ernst GGJ, Mbede E, Jacobs P (2010a) Tectonic control over active volcanism at a range of scales: case of the Rungwe Volcanic Province, SW Tanzania; and hazard implications. J Afr Earth Sci 58:764–777

    Article  Google Scholar 

  • Fontijn K, Ernst GGJ, Elburg MA, Williamson D, Abdallah E, Kwelwa S, Mbede E, Jacobs P (2010b) Holocene explosive eruptions in the Rungwe Volcanic Province, Tanzania. J Volcanol Geotherm Res 196:91–110

    Article  Google Scholar 

  • Harkin DA (1960) The Rungwe volcanics at the northern end of Lake Nyasa. Mem Geol Surv Tanganyika 11

  • Hildreth W, Drake RE (1992) Volcán Quizapu, Chilean Andes. Bull Volcanol 54:93–125

    Article  Google Scholar 

  • IAVCEI Commission on Tephra Hazard Modelling (2006) Field measurements for the characterization of tephra deposits. Field workshop report, Ecuador, 16–18 January 2006, 48 pp, http://www.ct.ingv.it/Progetti/Iavcei/report1.htm. Accessed 15 July 2010

  • Inman DL (1952) Measures for describing the size distribution of sediments. J Sed Petrol 22:125–145

    Google Scholar 

  • Johnson TC, Brown ET, McManus J, Barry S, Barker P, Gasse F (2002) A high-resolution paleoclimate record spanning the past 25,000 years in Southern East Africa. Science 296(113–114):131–132

    Google Scholar 

  • Johnson TC, Brown ET, Shi J (2010) Biogenic silica deposition in Lake Malawi, East Africa over the past 150,000 years. Palaeogeogr Palaeocl. doi:10.1016/j.palaeo.2010.01.024

    Google Scholar 

  • Kaminski E, Jaupart C (1998) The size distribution of pyroclasts and the fragmentation sequence in explosive volcanic eruptions. J Geophys Res 103:29759–29779

    Article  Google Scholar 

  • Newhall CG, Punongbayan RS (1996) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines. University of Washington Press, London

    Google Scholar 

  • Newhall CG, Self S (1982) The Volcanic Explosivity Index (VEI)—an estimate of explosive magnitude for historical volcanism. J Geophys Res 87:1231–1238

    Article  Google Scholar 

  • Papale P, Rosi M (1993) A case of no-wind Plinian fallout at Pululagua caldera (Ecuador): implications for models of clast dispersal. Bull Volcanol 55:523–535

    Article  Google Scholar 

  • Polacci M, Pioli L, Rosi M (2003) The Plinian phase of the Campanian Ignimbrite eruption (Phlegrean Fields, Italy): evidence from density measurements and textural characterization of pumice. Bull Volcanol 65:418–432

    Article  Google Scholar 

  • Polacci M, Papale P, Del Seppia D, Giordano D, Romano C (2004) Dynamics of magma ascent and fragmentation in trachytic versus rhyolitic eruptions. J Volcanol Geotherm Res 131:93–108

    Article  Google Scholar 

  • Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51:1–15

    Article  Google Scholar 

  • Pyle DM (1995) Assessment of the minimum volume of tephra fall deposits. J Volcanol Geotherm Res 69:379–382

    Article  Google Scholar 

  • Pyle DM (1999) Widely dispersed quaternary tephra in Africa. Global Planet Change 21:95–112

    Article  Google Scholar 

  • Pyle DM (2000) Sizes of volcanic eruptions. In: Sigurdsson H, Houghton B, Rymer H, Stix J, McNutt SR (eds) Encyclopedia of volcanoes. Academic Press, pp 263–269

  • Ring U, Betzler C, Delvaux D (1992) Normal vs. strike-slip faulting during rift development in East Africa: the Malawi rift. Geology 20:1015–1018

    Article  Google Scholar 

  • Sarna-Wojcicki AM, Shipley S, Waitt RB, Dzurisin D, Wood SH (1981) Areal distribution, thickness, mass, volume, and grain size of air-fall ash from the six major eruptions of 1980. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St Helens, Washington. USGS Prof Paper 1250:577–600

  • Scasso R, Corbella H, Tiberi P (1994) Sedimentological analysis of the tephra from 12–15 August 1991 eruption of Hudson volcano. Bull Volcanol 56:121–132

    Google Scholar 

  • Siebert L, Simkin T, Kimberly P (2011) Volcanoes of the world, 3rd edn. The University of California Press, Berkeley

    Google Scholar 

  • Sparks RSJ (1986) The dimensions and dynamics of volcanic eruption columns. Bull Volcanol 48:3–15

    Article  Google Scholar 

  • Sulpizio R (2005) Three empirical methods for the calculation of distal volume of tephra-fall deposits. J Volcanol Geotherm Res 145:315–336

    Article  Google Scholar 

  • Thevenon F, Williamson D, Taieb M (2002) A 22 kyr BP sedimentological record of Lake Rukwa (8°S, SW Tanzania): environmental, chronostratigraphic and climatic implications. Palaeogeogr Palaeocl 187:285–294

    Article  Google Scholar 

  • Thorarinsson S (1954) The tephra-fall from Hekla on March 29th 1947. The eruption of Hekla 1947–48(2):1–68

    Google Scholar 

  • United Republic of Tanzania (2002) Population and Housing Census. National Bureau of Statistics. http://www.nbs.go.tz. Accessed 5 February 2010.

  • USGS (2006) Shuttle radar topography mission. 3 arc second scene 179–057, filled finished-B. Global land cover facility. University of Maryland, Maryland

    Google Scholar 

  • Volentik ACM, Bonadonna C, Connor CB, Connor LJ, Rosi M (2010) Modeling tephra dispersal in absence of wind: Insights from the climactic phase of the 2450 BP Plinian eruption of Pululagua volcano (Ecuador). J Volcanol Geotherm Res 193:117–136

    Article  Google Scholar 

  • Walker GPL (1971) Grain-size characteristics of pyroclastic deposits. J Geol 79:696–714

    Article  Google Scholar 

  • Walker GPL (1973) Explosive volcanic eruptions—a new classification scheme. Geol Rundsch 62:431–446

    Article  Google Scholar 

  • Walker GPL (1981) Characteristics of two phreatoplinian ashes, and their water-flushed origin. J Volcanol Geotherm Res 9:395–407

    Article  Google Scholar 

  • Williams SN, Self S (1983) The October 1902 plinian eruption of Santa María Volcano, Guatemala. J Volcanol Geotherm Res 16:33–56

    Article  Google Scholar 

  • Williams TM, Henney PJ, Owen RB (1993) Recent eruptive episodes of the Rungwe Volcanic Field (Tanzania) recorded in lacustrine sediments of the northern Malawi rift. J Afr Earth Sci 17:33–39

    Article  Google Scholar 

  • Wilson L, Walker GPL (1987) Explosive volcanic eruptions-VI. Ejecta dispersal in Plinian eruptions: the control of eruption conditions and atmospheric properties. Geophys J Roy Astr Soc 89:657–679

    Google Scholar 

  • Woods AW (1998) Observations and models of volcanic eruption columns. In: Gilbert JS, Sparks RSJ (eds) The physics of explosive volcanic eruptions. Geol Soc Spec Publ 145:91–114

  • Woods AW, Bower SM (1995) The decompression of volcanic jets in a crater during explosive volcanic eruptions. Earth Planet Sci Lett 131:189–205

    Article  Google Scholar 

Download references

Acknowledgements

KF and GGJE are supported by the Belgian Research Foundation (FWO-Vlaanderen). Damien Delvaux is acknowledged for introduction in the field and providing assistance in obtaining working permissions. Edista Abdallah, Shimba Kwelwa, Shaban Sangalala, Gabriel Mwakyambiki and the people from Bongo Camping in Kibisi-Tukuyu are acknowledged for their support and friendship during and after field work. Danielle Schram is highly acknowledged for assistance with grain size analyses. Toon Van Dijck is thanked for assisting in pumice density measurements, and Alain Volentik for sharing thickness data from the Pululagua BF2 deposit. Reviews by Sebastian Watt and Mauro Rosi were highly appreciated and have improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Fontijn.

Additional information

Editorial responsibility: P. Delmelle

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fontijn, K., Ernst, G.G.J., Bonadonna, C. et al. The ~4-ka Rungwe Pumice (South-Western Tanzania): a wind-still Plinian eruption. Bull Volcanol 73, 1353–1368 (2011). https://doi.org/10.1007/s00445-011-0486-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-011-0486-8

Keywords

Navigation