Skip to main content
Log in

Higher photosynthetic capacity and different functional trait scaling relationships in erect bryophytes compared with prostrate species

  • Physiological Ecology - Original Research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Ecophysiological studies of bryophytes have generally been conducted at the shoot or canopy scale. However, their growth forms are diverse, and knowledge of whether bryophytes with different shoot structures have different functional trait levels and scaling relationships is limited. We collected 27 bryophyte species and categorised them into two groups based on their growth forms: erect and prostrate species. Twenty-one morphological, nutrient and photosynthetic traits were quantified. Trait levels and bivariate trait scaling relationships across species were compared between the two groups. The two groups had similar mean values for shoot mass per area (SMA), light saturation point and mass-based nitrogen (Nmass) and phosphorus concentrations. Erect bryophytes possessed higher values for mass-based chlorophyll concentration (Chlmass), light-saturated assimilation rate (A mass) and photosynthetic nitrogen/phosphorus use efficiency. Nmass, Chlmass and A mass were positively related, and these traits were negatively associated with SMA. Furthermore, the slope of the regression of Nmass versus Chlmass was steeper for erect bryophytes than that for prostrate bryophytes, whereas this pattern was reversed for the relationship between Chlmass and A mass. In conclusion, erect bryophytes possess higher photosynthetic capacities than prostrate species. Furthermore, erect bryophytes invest more nitrogen in chloroplast pigments to improve their light-harvesting ability, while the structure of prostrate species permits more efficient light capture. This study confirms the effect of growth form on the functional trait levels and scaling relationships of bryophytes. It also suggests that bryophytes could be good models for investigating the carbon economy and nutrient allocation of plants at the shoot rather than the leaf scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bao WK, Leng L (2005) Determination methods for photosynthetic pigment content of bryophytes with special relation of extracting solvents. Chin J Appl Environ Biol 11:235–237. doi:10.3321/j.issn:1006-687X.2005.02.026

    CAS  Google Scholar 

  • Bates JW (1998) Is ‘life-form’ a useful concept in bryophyte ecology? Oikos 82:223–237. doi:10.2307/3546962

    Article  Google Scholar 

  • Chapin FS, Oechel WC, Vancleve K, Lawrence W (1987) The role of mosses in the phosphorus cycling of an Alaskan black spruce forest. Oecologia 74:310–315. doi:10.1007/Bf00379375

    Article  Google Scholar 

  • Cornelissen JHC, Lang SI, Soudzilovskaia NA, During HJ (2007) Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Ann Bot 99:987–1001. doi:10.1093/aob/mcm030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crowley K, Bedford B (2011) Mosses influence phosphorus cycling in rich fens by driving redox conditions in shallow soils. Oecologia 167:253–264. doi:10.1007/s00442-011-1970-8

    Article  PubMed  Google Scholar 

  • Cui XY, Gu S, Wu J, Tang YH (2008) Photosynthetic response to dynamic changes of light and air humidity in two moss species from the Tibetan Plateau. Ecol Res 24:645–653. doi:10.1007/s11284-008-0535-8

    Article  Google Scholar 

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78:9–19. doi:10.1007/BF00377192

    Article  Google Scholar 

  • Gabriel R, Bates JW (2003) Responses of photosynthesis to irradiance in bryophytes of the Azores laurel forest. J Bryol 25:101–105. doi:10.1179/037366803235001760

    Google Scholar 

  • Glime JM (2007) Physiological ecology. In: Glime JM (ed) Bryophyte ecology, vol 1 (ebook sponsored by Michigan Technological University and the International Association of Bryologists). http://www.bryoecol.mtu.edu/. Accessed 16 Aug 2010

  • Hanson D, Renzaglia K, Villarreal J (2014) Diffusion limitation and CO2 concentrating mechanisms in bryophytes. In: Hanson DT, Rice SK (eds) Photosynthesis in bryophytes and early land plants. Springer, Dordrecht, pp 95–111

    Chapter  Google Scholar 

  • Hidaka A, Kitayama K (2009) Divergent patterns of photosynthetic phosphorus-use efficiency versus nitrogen-use efficiency of tree leaves along nutrient-availability gradients. J Ecol 97:984–991. doi:10.1111/j.1365-2745.2009.01540.x

    Article  CAS  Google Scholar 

  • Hikosaka K (2004) Interspecific difference in the photosynthesis–nitrogen relationship: patterns, physiological causes, and ecological importance. J Plant Res 117:481–494. doi:10.1007/s10265-004-0174-2

  • Hikosaka K, Shigeno A (2009) The role of Rubisco and cell walls in the interspecific variation in photosynthetic capacity. Oecologia 160:443–451. doi:10.1007/s00442-009-1315-z

    Article  PubMed  Google Scholar 

  • Karst AL, Lechowicz MJ (2007) Are correlations among foliar traits in ferns consistent with those in the seed plants? New Phytol 173:306–312. doi:10.1111/j.1469-8137.2006.01914.x

    Article  PubMed  Google Scholar 

  • Kubásek J, Hájek T, Glime JM (2014) Bryophyte photosynthesis in sunflecks: greater relative induction rate than in tracheophytes. J Bryol 36:110–117. doi:10.1179/1743282014Y.0000000096

    Article  Google Scholar 

  • Kürschner H, Frey W (2013) Life strategies in bryophytes—a prime example for the evolution of functional types. Nova Hedwigia 96:83–116. doi:10.1127/0029-5035/2012/0071

    Article  Google Scholar 

  • Lindo Z, Gonzalez A (2010) The bryosphere: an integral and influential component of the Earth’s biosphere. Ecosystems 13:612–627. doi:10.1007/s10021-010-9336-3

  • Liu GS (1996) Analysis for soil chemical properties and nutrients. In: Liu GS (ed) Soil physical and chemical analysis and description of soil profiles. China Standards Press, Beijing, pp 32–38

    Google Scholar 

  • Liu X, Wang Z, Bao WK, Li XM (2015) Photosynthetic responses of two pleurocarpous mosses to low-level nitrogen addition: a study in an old-growth fir forest. J Bryol 37:15–22. doi:10.1179/1743282014Y.0000000122

    Article  Google Scholar 

  • Lloyd J, Bloomfield K, Domingues TF, Farquhar GD (2013) Photosynthetically relevant foliar traits correlating better on a mass vs an area basis: of ecophysiological relevance or just a case of mathematical imperatives and statistical quicksand? New Phytol 199:311–321. doi:10.1111/nph.12281

    Article  CAS  PubMed  Google Scholar 

  • Mägdefrau K (1982) Life-forms of bryophytes. In: Smith AJE (ed) Bryophyte ecology. Chapman & Hall, London, pp 45–58

  • Marschall M, Proctor MCF (2004) Are bryophytes shade plants? Photosynthetic light responses and proportions of chlorophyll a, chlorophyll b and total carotenoids. Ann Bot 94:593–603. doi:10.1093/aob/mch178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Michel P, Lee WG, During HJ, Cornelissen JHC (2012) Species traits and their non-additive interactions control the water economy of bryophyte cushions. J Ecol 100:222–231. doi:10.1111/j.1365-2745.2011.01898.x

    Article  Google Scholar 

  • Niinemets Ü, Sack L (2006) Structural determinants of leaf light-harvesting capacity and photosynthetic potentials. In: Esser K, Lüttge U, Beyschlag W, Murata J (eds) Progress in botany. Springer, Berlin, pp 385–419

    Chapter  Google Scholar 

  • Niinemets Ü, Tobias M (2014) Scaling light harvesting from moss “leaves” to canopies. In: Hanson DT, Rice SK (eds) Photosynthesis in bryophytes and early land plants. Springer, Dordrecht, pp 151–171

    Chapter  Google Scholar 

  • Osnas JL, Lichstein JW, Reich PB, Pacala SW (2013) Global leaf trait relationships: mass, area, and the leaf economics spectrum. Science 340:741–744. doi:10.1126/science.1231574

    Article  CAS  PubMed  Google Scholar 

  • Poorter H, Lambers H, Evans JR (2014) Trait correlation networks: a whole-plant perspective on the recently criticized leaf economic spectrum. New Phytol 201:378–382. doi:10.1111/nph.12547

    Article  PubMed  Google Scholar 

  • Proctor MCF (2005) Why do Polytrichaceae have lamellae? J Bryol 27:221–229. doi:10.1179/174328205X69968

    Article  Google Scholar 

  • Rascher U, Freiberg M, Lüttge U (2011) Functional diversity of photosynthetic light use of 16 vascular epiphyte species under fluctuating irradiance in the canopy of a giant Virola michelii (Myristicaceae) tree in the tropical lowland forest of French Guyana. Front Plant Sci 2:117. doi:10.3389/fpls.2011.00117

  • Reich PB (2014) The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J Ecol 102:275–301. doi:10.1111/1365-2745.12211

    Article  Google Scholar 

  • Rice S, Cornelissen JH (2014) Best practices for measuring photosynthesis at multiple scales. In: Hanson DT, Rice SK (eds) Photosynthesis in bryophytes and early land plants. Springer, Dordrecht, pp 79–93

    Chapter  Google Scholar 

  • Rice SK, Aclander L, Hanson DT (2008) Do bryophyte shoot systems function like vascular plant leaves or canopies? Functional trait relationships in Sphagnum mosses (Sphagnaceae). Am J Bot 95:1366–1374. doi:10.3732/Ajb.0800019

    Article  PubMed  Google Scholar 

  • Rice S, Hanson D, Portman Z (2014) Structural and functional analyses of bryophyte canopies. In: Hanson DT, Rice SK (eds) Photosynthesis in bryophytes and early land plants. Springer, Dordrecht, pp 173–185

    Chapter  Google Scholar 

  • Romero C, Putz FE, Kitajima K (2006) Ecophysiology in relation to exposure of pendant epiphytic bryophytes in the canopy of a tropical montane oak forest. Biotropica 38:35–41. doi:10.1111/j.1744-7429.2006.00099.x

  • Shipley B, Lechowicz MJ, Wright I, Reich PB (2006) Fundamental trade-offs generating the worldwide leaf economics spectrum. Ecology 87:535–541. doi:10.1890/05-1051

    Article  PubMed  Google Scholar 

  • Sterner RW, Elser JJ (2002) Biological chemistry: building cells from elements. In: Sterner RW, Elser JJ (eds) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton, pp 44–79

    Google Scholar 

  • Street LE et al (2013) The role of mosses in carbon uptake and partitioning in arctic vegetation. New Phytol 199:163–175. doi:10.1111/nph.12285

    Article  CAS  PubMed  Google Scholar 

  • Tobias M, Niinemets U (2010) Acclimation of photosynthetic characteristics of the moss Pleurozium schreberi to among-habitat and within-canopy light gradients. Plant Biol 12:743–754. doi:10.1111/j.1438-8677.2009.00285.x

    Article  CAS  PubMed  Google Scholar 

  • Vanderpoorten A, Goffinet B (2009) Physiological ecology. In: Vanderpoorten A, Goffinet B (eds) Introduction to bryophytes. Cambridge University Press, New York, pp 185–213

    Chapter  Google Scholar 

  • Waite M, Sack L (2010) How does moss photosynthesis relate to leaf and canopy structure? Trait relationships for 10 Hawaiian species of contrasting light habitats. New Phytol 185:156–172. doi:10.1111/j.1469-8137.2009.03061.x

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Bao WK, Feng DF, Lin HH (2014) Functional trait scaling relationships across 13 temperate mosses growing in wintertime. Ecol Res 29:629–639. doi:10.1007/s11284-014-1146-1

    Article  CAS  Google Scholar 

  • Warton DI, Weber NC (2002) Common slope tests for bivariate errors-in-variables models. Biom J 44:161–174. doi:10.1002/1521-4036(200203)44:2<161:AID-BIMJ161>3.0.CO;2-N

    Article  Google Scholar 

  • Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line-fitting methods for allometry. Biol Rev Camb Philos Soc 81:259–291. doi:10.1017/S1464793106007007

    Article  PubMed  Google Scholar 

  • Westoby M, Reich PB, Wright IJ (2013) Understanding ecological variation across species: area-based vs mass-based expression of leaf traits. New Phytol 199:322–323. doi:10.1111/nph.12345

    Article  PubMed  Google Scholar 

  • Wright IJ et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827. doi:10.1038/nature02403

    Article  CAS  PubMed  Google Scholar 

  • Wu PC (1998) Bryological biology, introduction and diverse branches. Science Press, Beijing

    Google Scholar 

  • Xiang S, Reich PB, Sun SC, Atkin OK (2013) Contrasting leaf trait scaling relationships in tropical and temperate wet forest species. Funct Ecol 27:522–534. doi:10.1111/1365-2435.12047

    Article  Google Scholar 

  • Ye ZP (2007) A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa. Photosynthetica 45:637–640. doi:10.1007/s11099-007-0110-5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We extend our greatest appreciation to the Administration Bureau of Dagu Glacier Park and Mr. Huaxiang Tang supporting the field work and Dr. Xiaoli Yan for assisting with bryophyte identification. We also thank Prof. Janice Glime, Prof. H. J. (Heinjo) During, Dr. Fanglan Li, Dr. Zhangming Zhu and Mr. Peishen Wang for their valuable comments that helped to improve the manuscript. This research was supported by the National Natural Science Foundation of China (no. 31400187).

Author contribution statement

ZW and WB conceived and designed the experiments. ZW and XL performed the experiments, analysed the data and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weikai Bao.

Additional information

Communicated by Kouki Hikosaka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 77 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Liu, X. & Bao, W. Higher photosynthetic capacity and different functional trait scaling relationships in erect bryophytes compared with prostrate species. Oecologia 180, 359–369 (2016). https://doi.org/10.1007/s00442-015-3484-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3484-2

Keywords

Navigation