Skip to main content
Log in

Adherence to Bergmann’s rule by lizards may depend on thermoregulatory mode: support from a nocturnal gecko

  • Population ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Bergmann’s rule predicts an increase in body size with decreasing environmental temperature; however, the converse pattern has been found in the majority of lizards studied to date. For these ectotherms, small body size may provide thermal benefits (rapid heat uptake when basking), which would be highly advantageous in cold environments. Yet such an advantage may not exist in nocturnal lizards (which do not avidly bask), in which Bergmann’s rule has not been closely studied. We have examined whether the body size of a primarily nocturnal gecko, Woodworthia “Otago/Southland” changed with elevation and operative temperature (determined using physical copper models). In a laboratory study, we investigated whether thermoregulatory mode (heliothermy or thigmothermy) alters the effect of body size on heating and cooling rates. This gecko followed Bergmann’s rule, thereby showing the opposite of the dominant pattern in diurnal lizards. Size at maturity, maximum size of adults and size at birth were larger at higher elevations and at lower operative temperatures. Using physical models, we found that large body size can confer thermal benefits for nocturnal lizards that remain within diurnal retreats. Bergmann’s rule should not be dismissed for all lizards. Our results clearly support Bergmann’s rule for at least one thigmothermic species, for which large body size may provide thermal benefits. Future studies on Bergmann’s rule in lizards should consider thermoregulatory mode. We advocate that this ecogeographic rule be examined in relation to operative temperature measured at field sites. Finally, we predict that climate warming may weaken the relationship between body size and elevation in this gecko.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams DC, Church JO (2008) Amphibians do not follow Bergmann’s rule. Evolution 62:413–420. doi:10.1111/j.1558-5646.2007.00297.x

    Article  PubMed  Google Scholar 

  • Adolph S, Porter W (1996) Growth, seasonality, and lizard life histories: age and size at maturity. Oikos 77:267–278

    Article  Google Scholar 

  • Aguilar R, Cruz FB (2010) Refuge use in a Patagonian nocturnal lizard, Homonota darwini: the role of temperature. J Herpetol 44:236–241. doi:10.1670/08-270.1

    Article  Google Scholar 

  • Angilletta MJ Jr (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, New York

    Book  Google Scholar 

  • Angilletta MJ Jr, Niewiarowski PH, Dunham AE, Leaché AD, Porter WP (2004) Bergmann’s clines in ectotherms: illustrating a life-history perspective with sceloporine lizards. Am Nat 164:E168–E183. doi:10.1086/425222

    Article  Google Scholar 

  • Ashton KG (2001) Are ecological and evolutionary rules being dismissed prematurely? Divers Distrib 7:289–295. doi:10.1046/j.1366-9516.2001.00115.x

    Article  Google Scholar 

  • Ashton KG (2002) Do amphibians follow Bergmann’s rule? Can J Zool 80:708–716. doi:10.1139/z02-049

    Article  Google Scholar 

  • Ashton K, Feldman C (2003) Bergmann’s rule in nonavian reptiles: turtles follow it, lizards and snakes reverse it. Evolution 57:1151–1163. doi:10.1111/j.0014-3820.2003.tb00324.x

    Article  PubMed  Google Scholar 

  • Bakken GS (1992) Measurement and application of operative and standard operative temperatures in ecology. Am Zool 32:194–216. doi:10.1093/icb/32.2.194

    Google Scholar 

  • Blackburn TM, Gaston KJ, Loder N (1999) Geographic gradients in body size: a clarification of Bergmann’s rule. Divers Distrib 5:165–174. doi:10.1046/j.1472-4642.1999.00046.x

    Article  Google Scholar 

  • Blanckenhorn WU, Demont M (2004) Bergmann and converse Bergmann latitudinal clines in arthropods: two ends of a continuum? Integr Comp Biol 44:413–424. doi:10.1093/icb/44.6.413

    Article  CAS  PubMed  Google Scholar 

  • Brandt R, Navas C (2013) Body size variation across climatic gradients and sexual size dimorphism in Tropidurinae lizards. J Zool 290:192–198. doi:10.1111/jzo.12024

    Article  Google Scholar 

  • Buckley LB, Miller EF, Kingsolver JG (2013) Ectotherm thermal stress and specialization across altitude and latitude. Integr Comp Biol 53:571–581. doi:10.1093/icb/ict026

    Article  PubMed  Google Scholar 

  • Carrascal LM, Lopez P, Martìn J, Salvador A (1992) Basking and antipredator behaviour in a high altitude lizard: implications of heat exchange rate. Ethology 92:143–154. doi:10.1111/j.1439-0310.1992.tb00955.x

    Article  Google Scholar 

  • Chamaille-Jammes S, Massot M, Aragon P, Clobert J (2006) Global warming and positive fitness response in mountain populations of common lizards Lacerta vivipara. Glob Change Biol 12:392–402. doi:10.1111/j.1365-2486.2005.01088.x

    Article  Google Scholar 

  • Civantos E, Salvador A, Veiga JP (1999) Body size and microhabitat affect winter survival of hatchling Psammodromus algirus lizards. Copeia 4:1112–1117. doi:10.2307/1447988

    Article  Google Scholar 

  • Clauser C, Huenges E (1995) Thermal conductivity of rocks and minerals. In: Ahrens TJ (ed) Rock physics and phase relations: a handbook of physical constants. American Geophysical Union, Washington DC

    Google Scholar 

  • Cree A (1994) Low annual reproductive output in female reptiles from New Zealand. N Z J Zool 21:351–372. doi:10.1080/03014223.1994.9518005

    Article  Google Scholar 

  • Cree A, Guillette L (1995) Biennial reproduction with a fourteen-month pregnancy in the gecko Hoplodactylus maculatus from southern New Zealand. J Herpetol 29:163–173

    Article  Google Scholar 

  • Cree A, Hare K (2010) Equal thermal opportunity does not result in equal gestation length in a cool-climate skink and gecko. Herpetol Conserv Biol 5:271–282

    Google Scholar 

  • Cree A, Tyrrell CL, Preest MR, Thorburn D, Guillette LJ Jr (2003) Protecting embryos from stress: corticosterone effects and the corticosterone response to capture and confinement during pregnancy in a live-bearing lizard (Hoplodactylus maculatus). Gen Comp Endocrinol 134:316–329. doi:10.1016/S0016-6480(03)00282-X

    Article  CAS  PubMed  Google Scholar 

  • Cruz F, Fitzgerald L, Espinoza R, Schulte I (2005) The importance of phylogenetic scale in tests of Bergmann’s and Rapoport’s rules: lessons from a clade of South American lizards. J Evol Biol 18:1559–1574. doi:10.1111/j.1420-9101.2005.00936.x

    Article  CAS  PubMed  Google Scholar 

  • Cushman JH, Lawton JH, Manly BF (1993) Latitudinal patterns in European ant assemblages: variation in species richness and body size. Oecologia 95:30–37. doi:10.1007/BF00649503

    Article  Google Scholar 

  • Cvetković D, Tomašević N, Ficetola GF, Crnobrnja-Isailović J, Miaud C (2009) Bergmann’s rule in amphibians: combining demographic and ecological parameters to explain body size variation among populations in the common toad Bufo bufo. J Zool Syst Evol Res 47:171–180. doi:10.1111/j.1439-0469.2008.00504.x

    Article  Google Scholar 

  • Dillon ME, Frazier MR, Dudley R (2006) Into thin air: physiology and evolution of alpine insects. Integr Comp Biol 46:49–61. doi:10.1093/icb/icj007

    Article  PubMed  Google Scholar 

  • Doughty P, Shine R (1998) Reproductive energy allocation and long-term energy stores in a viviparous lizard (Eulamprus tympanum). Ecology 79:1073–1083. doi:10.2307/176602

    Article  Google Scholar 

  • Feldman A, Meiri S (2014) Australian snakes do not follow Bergmann’s rule. Evol Biol 41:327–335. doi:10.1007/s11692-014-9271-x

    Article  Google Scholar 

  • Fitzharris B (2003) Climate. In: Darby JT, Fordyce RE, Mark AF, Probert PK, Townsend C (eds) The natural history of southern New Zealand. University of Otago Press, Dunedin, pp 65–86

    Google Scholar 

  • Gaby MJ, Besson AA, Bezzina CN, Caldwell AJ, Cosgrove S, Cree A, Haresnape S, Hare KM (2011) Thermal dependence of locomotor performance in two cool-temperate lizards. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 197:869–875. doi:10.1007/s00359-011-0648-3

    Article  PubMed  Google Scholar 

  • Gaston KJ, Chown SL, Evans KL (2008) Ecogeographical rules: elements of a synthesis. J Biogeogr 35:483–500. doi:10.1111/j.1365-2699.2007.01772.x

    Article  Google Scholar 

  • Harris R, McQuillan P, Hughes L (2012) Patterns in body size and melanism along a latitudinal cline in the wingless grasshopper, Phaulacridium vittatum. J Biogeogr 39:1450–1461. doi:10.1111/j.1365-2699.2012.02710.x

    Article  Google Scholar 

  • Horváthová T, Cooney CR, Fitze PS, Oksanen TA, Jelić D, Ghira I, Uller T, Jandzik D (2013) Length of activity season drives geographic variation in body size of a widely distributed lizard. Ecol Evol 3:2424–2442. doi:10.1002/ece3.613

    Article  Google Scholar 

  • Huang SP, Chiou CR, Lin TE, Tu MC, Lin CC, Porter WP (2013) Future advantages in energetics, activity time, and habitats predicted in a high-altitude pit viper with climate warming. Funct Ecol 27:446–458. doi:10.1111/1365-2435.12040

    Article  Google Scholar 

  • Kearney MR, Shamakhy A, Tingley R, Karoly DJ, Hoffmann AA, Briggs PR, Porter WP (2014) Microclimate modelling at macro scales: a test of a general microclimate model integrated with gridded continental-scale soil and weather data. Methods Ecol Evol 5:273–286. doi:10.1111/2041-210x.12148

    Article  Google Scholar 

  • Lettink M (2007) Detectability, movements and apparent lack of homing in Hoplodactylus maculatus (Reptilia: diplodactylidae) following translocation. N Z J Ecol 31:111–116

    Google Scholar 

  • Lettink M, Cree A (2007) Relative use of three types of artificial retreats by terrestrial lizards in grazed coastal shrubland, New Zealand. Appl Herpetol 4:227–243

    Article  Google Scholar 

  • Lettink M, Whitaker A (2006) Hoplodactylus maculatus (common gecko). Longevity. Herpetol Rev 37:223–224

    Google Scholar 

  • MacAvoy ES (1976) The physiology of lizards from arid regions in Central Otago. PhD thesis. University of Otago, Dunedin

  • Martin U (2000) Eruptions and deposition of volcaniclastic rocks in the Dunedin Volcanic Complex, Otago Peninsula, New Zealand. PhD thesis. University of Otago, Dunedin

  • Martin J, Lopez P (2003) Ontogenetic variation in antipredator behavior of Iberian rock lizards (Lacerta monticola): effects of body-size-dependent thermal-exchange rates and costs of refuge use. Can J Zool 81:1131–1137. doi:10.1139/z03-094

    Article  Google Scholar 

  • Martin J, Lopez P, Carrascal LM, Salvador A (1995) Adjustment of basking postures in the high-altitude Iberian rock lizard (Lacerta monticola). Can J Zool 73:1065–1068. doi:10.1139/z95-126

    Article  Google Scholar 

  • Meiri S (2011) Bergmann’s rule–what’s in a name? Glob Ecol Biogeogr 20:203–207. doi:10.1111/j.1466-8238.2010.00577.x

    Article  Google Scholar 

  • Meiri S, Bauer AM, Chirio L, Colli GR, Das I, Doan TM, Feldman A, Herrera FC, Novosolov M, Pafilis P (2013) Are lizards feeling the heat? A tale of ecology and evolution under two temperatures. Glob Ecol Biogeogr 22:834–845. doi:10.1111/geb.12053

    Article  Google Scholar 

  • Nielsen SV, Bauer AM, Jackman TR, Hitchmough RA, Daugherty CH (2011) New Zealand geckos (Diplodactylidae): cryptic diversity in a post-Gondwanan lineage with trans-Tasman affinities. Mol Phylogenet Evol 59:1–22. doi:10.1016/j.ympev.2010.12.007

    Article  PubMed  Google Scholar 

  • Ohlberger J (2013) Climate warming and ectotherm body size–from individual physiology to community ecology. Funct Ecol 27:991–1001. doi:10.1111/1365-2435.12098

    Article  Google Scholar 

  • Olalla-Tárraga MÁ (2011) “Nullius in Bergmann” or the pluralistic approach to ecogeographical rules: a reply to Watt et al. (2010). Oikos 120:1441–1444. doi:10.1111/j.1600-0706.2011.19319.x

    Article  Google Scholar 

  • Olalla-Tárraga MÁ, Rodríguez MÁ, Hawkins BA (2006) Broad-scale patterns of body size in squamate reptiles of Europe and North America. J Biogeogr 33:781–793. doi:10.1111/j.1365-2699.2006.01435.x

    Article  Google Scholar 

  • Olalla-Tárraga MÁ, Bini LM, Diniz-Filho JAF, Rodríguez MÁ (2010) Cross-species and assemblage-based approaches to Bergmann’s rule and the biogeography of body size in Plethodon salamanders of eastern North America. Ecography 33:362–368. doi:10.1111/j.1600-0587.2010.06244.x

    Google Scholar 

  • Oufiero CE, Gartner GE, Adolph SC, Garland T (2011) Latitudinal and climatic variation in body size and dorsal scale counts in Sceloporus lizards: a phylogenetic perspective. Evolution 65:3590–3607. doi:10.1111/j.1558-5646.2011.01405.x

    Article  PubMed  Google Scholar 

  • Pincheira-Donoso D (2010) The balance between predictions and evidence and the search for universal macroecological patterns: taking Bergmann’s rule back to its endothermic origin. Theory Biosci 129:247–253. doi:10.1007/s12064-010-0101-0

    Article  PubMed  Google Scholar 

  • Pincheira-Donoso D, Meiri S (2013) An intercontinental analysis of climate-driven body size clines in reptiles: no support for patterns, no signals of processes. Evol Biol 40:562–578. doi:10.1007/s11692-013-9232-9

    Article  Google Scholar 

  • Pincheira-Donoso D, Hodgson D, Tregenza T (2008) The evolution of body size under environmental gradients in ectotherms: why should Bergmann’s rule apply to lizards? BMC Evol Biol 8:68

    Article  PubMed Central  PubMed  Google Scholar 

  • Reisinger A, Mullan B, Manning M, Wratt D, Nottage R (2010) Global and local climate change scenarios to support adaptation in New Zealand. In: Nottage RAC, Wratt DS, Bornman JF, Jones K (eds) Climate change adaptation in New Zealand: future scenarios and some sectoral perspectives. N Z Clim Change Cent, Wellington, pp 26–43

    Google Scholar 

  • Rock J, Cree A (2003) Intraspecific variation in the effect of temperature on pregnancy in the viviparous gecko Hoplodactylus maculatus. Herpetologica 59:8–22. doi:10.1655/0018-0831(2003)059[0008:IVITEO]2.0.CO;2

  • Rock J, Cree A (2008) Extreme variation in body temperature in a nocturnal thigmothermic lizard. Herpetol J 18:69–76

    Google Scholar 

  • Rock J, Cree A, Andrews RM (2002) The effect of reproductive condition on thermoregulation in a viviparous gecko from a cool climate. J Therm Biol 27:17–27. doi:10.1016/S0306-4565(01)00011-0

    Article  Google Scholar 

  • Schäuble CS (2004) Variation in body size and sexual dimorphism across geographical and environmental space in the frogs Limnodynastes tasmaniensis and L. peronii. Biol J Linn Soc 82:39–56. doi:10.1111/j.1095-8312.2004.00315.x

    Article  Google Scholar 

  • Schwarzkopf L, Shine R (1991) Thermal biology of reproduction in viviparous skinks, Eulamprus tympanum: why do gravid females bask more? Oecologia 88:562–569. doi:10.1007/BF00317720

    Article  Google Scholar 

  • Sears MW, Angilletta MJ Jr (2004) Body size clines in Sceloporus lizards: proximate mechanisms and demographic constraints. Integr Comp Biol 44:433–442. doi:10.1093/icb/44.6.433

    Article  PubMed  Google Scholar 

  • Sheehan H (2002) Age at maturity, longevity and sexual dimorphism in a sub-alpine population of common geckos (Hoplodactylus maculatus): a comparison with warmer populations. Honours dissertation. University of Otago, Dunedin

  • Shelomi M (2012) Where are we now? Bergmann’s rule sensu lato in insects. Am Nat 180:511–519. doi:10.1086/667595

    Article  PubMed  Google Scholar 

  • Shine R, Kearney M (2001) Field studies of reptile thermoregulation: how well do physical models predict operative temperatures? Funct Ecol 15:282–288. doi:10.1046/j.1365-2435.2001.00510.x

    Article  Google Scholar 

  • Sunday JM, Bates AE, Kearney MR, Colwell RK, Dulvy NK, Longino JT, Huey RB (2014) Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc Natl Acad Sci USA 111:5610–5615. doi:10.1073/pnas.1316145111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Teplitsky C, Millien V (2014) Climate warming and Bergmann’s rule through time: is there any evidence? Evol Appl 7:156–168. doi:10.1111/eva.12129

    Article  PubMed Central  PubMed  Google Scholar 

  • Teplitsky C, Mills JA, Alho JS, Yarrall JW, Merilä J (2008) Bergmann’s rule and climate change revisited: disentangling environmental and genetic responses in a wild bird population. Proc Natl Acad Sci USA 105:13492–13496. doi:10.1073/pnas.0800999105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Todd AC (2005) The social mating system of Hoplodactylus maculatus. N Z J Zool 32:251–262. doi:10.1080/03014223.2005.9518417

    Article  Google Scholar 

  • Towns DR (1985) A field guide to the lizards of New Zealand. N.Z. Wildlife Service Occasional Publication No. 7. New Zealand Wildlife Service, Department of Internal Affairs, Wellington, pp 8–9

  • Uller T, While GM, Cadby CD, Harts A, O’Connor K, Pen I, Wapstra E (2011) Altitudinal divergence in maternal thermoregulatory behaviour may be driven by differences in selection on offspring survival in a viviparous lizard. Evolution 65:2313–2324. doi:10.1111/j.1558-5646.2011.01303.x

    Article  PubMed  Google Scholar 

  • Volynchik S (2014) Climate-related variation in body dimensions within four lacertid species. Int J Zool 2014. doi:10.1155/2014/795387

    Google Scholar 

  • Walters RJ, Hassall M (2006) The temperature-size rule in ectotherms: may a general explanation exist after all? Am Nat 167:510–523. doi:10.1086/501029

    Article  PubMed  Google Scholar 

  • Wapstra E, Swain R, O’Reilly JM (2001) Geographic variation in age and size at maturity in a small Australian viviparous skink. Copeia 2001:646–655. doi:10.1643/0045-8511(2001)001[0646:GVIAAS]2.0.CO;2

  • Watt C, Mitchell S, Salewski V (2010) Bergmann’s rule; a concept cluster? Oikos 119:89–100. doi:10.1111/j.1600-0706.2009.17959.x

    Article  Google Scholar 

  • Whitaker AH (1982) Interim results from a study of Hoplodactylus maculatus (Boulenger) at Turakirae Head, Wellington. In: Newman DG (ed) New Zealand herpetology. N.Z. Wildlife Service Occasional Publication No. 2. New Zealand Wildlife Service, Department of Internal Affairs, Wellington, pp 363–374

  • Wilson J, Cree A (2003) Extended gestation with late-autumn births in a cool-climate viviparous gecko from southern New Zealand (Reptilia: Naultinus gemmeus). Austral Ecol 28:339–348. doi:10.1046/j.1442-9993.2003.01293.x

    Article  Google Scholar 

Download references

Acknowledgments

This research was carried out with permission from the Department of Conservation (OT-28494-FAU) and the University of Otago Animal Ethics Committee (55/10), and following consultation with the Ngai Tahu Consultation Committee and Kati Huirapa Runaka ki Puketeraki. A student research grant from the Society for Research on Amphibians and Reptiles in New Zealand and support from OURG grant ORG0110-0312 to AC helped to fund this study. We thank the many landowners who kindly allowed us access and also thank all of our field assistants. Thank you to all the staff in the Department of Zoology, particularly to Murray McKenzie for help with equipment, to Kim Garrett for fieldwork support and to Ken Miller for graphical expertise. We are grateful to the anonymous reviewers, two examiners for comments on the Masters thesis that preceded this manuscript and to Steve Adolph, Jo Monks and the Cree lab group for discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Penniket.

Additional information

Communicated by Raoul Van Damme.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 108,798 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penniket, S., Cree, A. Adherence to Bergmann’s rule by lizards may depend on thermoregulatory mode: support from a nocturnal gecko. Oecologia 178, 427–440 (2015). https://doi.org/10.1007/s00442-015-3239-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3239-0

Keywords

Navigation