Skip to main content
Log in

Zooplankton competition promotes trade-offs affecting diapause in rotifers

  • Physiological ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Facultative diapause should be favoured by natural selection in temporary variable habitats. Diapause patterns are evolutionary constrained because producing diapause is resource demanding, which might have implications for competitive dynamics and competitor coexistence through mechanisms such as the storage effect. Besides these implications, competition intensity might affect the quality of the diapausing stages and the reproductive success of the offspring emerging from them. We experimentally analysed traits involved in diapause in the cyclically parthenogenetic rotifer Brachionus calyciflorus, in relation to the presence of its competitor, the cladoceran Moina micrura. Under competition with Moina, Brachionus produced fewer diapausing eggs, most of which possessed visual attributes indicating a higher quality. These diapausing eggs produced under a competitive environment had a higher hatching success; however, the hatchlings exhibited a lower population growth rate. We propose the existence of trade-offs between traits related to diapause: the number of produced eggs, quality of these eggs and hatchling performance. Our results show that interspecific competition may cause fine-tuned changes in the life cycle patterns of the populations. Furthermore, these changes could affect that abundance and performance of competitors and thereby drive back effects on the competitive output. These diapause-driven feedback mechanisms may have strong implications for the dynamics of the natural communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alver MO, Hagiwara A (2007) An individual-based population model for the prediction of rotifer population dynamics and resting egg production. Hydrobiologia 593:19–26

    Article  Google Scholar 

  • Aránguiz-Acuña A, Ramos-Jiliberto R (2014) Diapause may promote coexistence of zooplankton competitors. J Plankton Res 36:978–988

    Article  Google Scholar 

  • Azuraidi OM, Yusoff FM, Shamsudin MN, Raha R, Alekseev VR, Matias-Peralta HM (2013) Effect of food density on male appearance and ephippia production in a tropical cladoceran, Moina micrura Kurz, 1874. Aquaculture 412–413:131–135

  • Borowitzka MA, Borowitzka LJ (1988) Micro-algal biotechnology. Cambridge University Press, Cambridge

    Google Scholar 

  • Carmona MJ, Serra M, Miracle MR (1994) Effect of population density and genotype on life-history traits in the rotifer Brachionus plicatilis O.F Müller. J Exp Mar Biol Ecol 182:223–235

    Article  Google Scholar 

  • Chesson PL (1994) Multispecies competition in variable environments. Theor Popul Biol 45:227–276

    Article  Google Scholar 

  • Chesson PL, Huntly N (1989) Short-term instabilities and long-term community dynamics. Trends Ecol Evol 4:293–298

    Article  CAS  PubMed  Google Scholar 

  • Clark MS, Denekamp NY, Thorne MAS, Reinhardt R, Drungowski M, Albrecht MW, Klages S, Beck A, Kube M, Lubzens E (2012) Long-term survival of hydrated resting eggs from Brachionus plicatilis. PLoS One 7(1):e29365. doi:10.1371/journal.pone.0029365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cody ML, Diamond JM (1975) Ecology and evolution of communities. Harvard University Press, Cambridge

    Google Scholar 

  • Diamond JM, Case TJ (1986) Community ecology. Harper and Row, New York

    Google Scholar 

  • Fussmann GF, Kramer G, Labib M (2007) Incomplete induction of mixis in Brachionus calyciflorus: patterns of reproduction at the individual level. Hydrobiologia 593:111–119

    Article  Google Scholar 

  • García-Roger EM, Carmona MJ, Serra M (2005) Deterioration patterns in diapausing egg banks of Brachionus (Müller, 1786) rotifer species. J Exp Mar Biol Ecol 314:149–161

    Article  Google Scholar 

  • Gilbert JJ (1974) Dormancy in rotifers. Trans Am Microsc Soc 93:490–513

    Article  Google Scholar 

  • Gilbert JJ, Schröder T (2007) Intraclonal variation in propensity for mixis in rotifers: variation among females and with maternal age. Hydrobiologia 593:121–128

    Article  Google Scholar 

  • Hagiwara A, Hino A (1989) Effect of incubation and preservation on resting egg hatching and mixis in the derived clones of the rotifer Brachionus plicatilis. Hydrobiologia 186(187):415–421

    Article  Google Scholar 

  • Hahn DA, Denlinger DL (2007) Meeting the energetic demands of insect diapause: nutrient storage and utilization. J Insect Physiol 53:760–773

    Article  CAS  PubMed  Google Scholar 

  • Hahn DA, Denlinger DL (2011) Energetics of diapause. Annu Rev Entomol 56:103–121

    Article  CAS  PubMed  Google Scholar 

  • Hairston NG Jr (1998) Time travelers: what’s timely in diapause research. Arch Hydrobiol 52:1–15

    Google Scholar 

  • Kilham SS, Kreeger DA, Lynn SG, Goulden CE, Herrera L (1998) COMBO: a defined freshwater culture medium for algae and zooplankton. Hydrobiologia 377:147–159

    Article  CAS  Google Scholar 

  • Kroon A, Veenedaal RL (1998) Trade-off between diapause and other life-history traits in the spider mite Tatranychus urticae. Ecol Entomol 23:298–304

    Article  Google Scholar 

  • Kubanek J, Snell TW (2008) Quorum sensing in rotifers. In: Winans SC, Bassler BL (eds) Chemical communication among bacteria. ASM, Washington, DC, pp 453–461

    Chapter  Google Scholar 

  • Lacerot G, Kruk C, Lürling M, Scheffer M (2013) The role of subtropical zooplankton as grazers of phytoplankton under different predation levels. Freshwater Biol 58:494–503

    Article  Google Scholar 

  • Matsuo Y (2006) Cost of prolonged diapause and its relationship to body size in a seed predator. Funct Ecol 20:300–306

    Article  Google Scholar 

  • Montero-Pau J, Serra M (2011) Life-cycle switching and coexistence of species with no niche differentiation. PLoS One 6:e20314. doi:10.1371/journal.pone.0020314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morin PJ (2011) Community ecology, 2nd edn. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  • Pagano M (2008) Feeding of tropical cladocerans (Moina micrura, Diaphanosoma excisum) and rotifer (Brachionus calyciflorus) on natural phytoplankton: effect of phytoplankton size-structure. J Plankton Res 30:401–414

    Article  Google Scholar 

  • Perez MH, Noriega FG (2013) Aedes aegypti pharate 1st instar quiescence: a case for anticipatory reproductive plasticity. J Insect Physiol 59:318–324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pourriot R, Snell TW (1983) Resting eggs in rotifers. Hydrobiologia 104:213–224

    Article  Google Scholar 

  • Preston BL, Snell TW, Robinson TL, Dingmann BJ (2000) Use of the freshwater rotifer Brachionus calyciflorus in a screening assay for potential endocrine disruptors. Environ Toxicol Chem 19:2923–2928

    Article  CAS  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Ramos-Jiliberto R, Aránguiz-Acuña A (2007) Between-species differences in demographic responses to temperature of coexisting cladocerans. Austral Ecol 32:766–774

    Article  Google Scholar 

  • Ribeiro Rodrigues LH, Arenzon A, Raya-Rodriguez MT, Ferreira Fontoura N (2011) Algal density assessed by spectrophotometry: a calibration curve for the unicellular algae Pseudokirchneriella subcapitata. J Environ Chem Ecotoxicol 3:225–228

    Google Scholar 

  • Roff DA (1992) The evolution of life histories theory and analysis. Chapman and Hall, New York

    Google Scholar 

  • Rothhaupt KO (1990) Differences in particle size-dependent feeding efficiencies of closely related rotifer species. Limnol Oceanogr 35:16–23

    Article  Google Scholar 

  • Roulin AC, Routtu J, Hall MD, Janicke T, Colson I, Haag C, Ebert D (2013) Local adaptation of sex induction in a facultative sexual crustacean: insights from QTL mapping and natural populations of Daphnia magna. Mol Ecol 22:3567–3579

    Article  CAS  PubMed  Google Scholar 

  • Serra M, Snell TW, King CE (2004) The timing of sex in cyclically parthenogenetic rotifers. In: Moya A, Font E (eds) Evolution: from molecules to ecosystems. Oxford University Press, Oxford, pp 135–146

    Google Scholar 

  • Serra M, Snell TW, Gilbert JJ (2005) Delayed mixis in rotifers: an adaptive response to the effects on density-dependent sex on population growth. J Plankton Res 27:37–45

    Article  Google Scholar 

  • Smith HA, Snell TW (2012) Rapid evolution of sex frequency and dormancy as hydroperiod adaptations. J Evol Biol 25:2501–2510

    Article  CAS  PubMed  Google Scholar 

  • Snell TW, Kubanek J, Carter W, Payne AB, Kim J, Hicks MK, Stelzer CP (2006) A protein signal triggers sexual reproduction in Brachionus plicatilis (Rotifera). Mar Biol 149:763–773

    Article  CAS  Google Scholar 

  • Spencer M, Colegrave N, Schwartz SS (2001) Hatching fraction and timing of resting stage production in seasonal environments: effects of density dependence and uncertain season length. J Evol Biol 14:357–367

    Article  Google Scholar 

  • Tessier A, Consolatti N (1991) Resource quantity and offspring quality in Daphnia. Ecology 72:468–478

    Article  Google Scholar 

  • Wurdak ES, Gilbert JJ, Jagels R (1978) Fine structure of the resting eggs of the rotifers Branchionus calyciflorus and Asplanchna sieboldi. T Am Microsc Soc 97:49–72

    Article  CAS  Google Scholar 

  • Xi YL, Hagiwara A (2007) Competition between the rotifer Brachionus calyciflorus and the Cladoceran Moina macrocopa in relation to algal food concentration and initial rotifer population density. J Freshwater Ecol 22:421–427

    Article  Google Scholar 

  • Zadereev YS (2003) Maternal effects, conspecific chemical cues, and switching from parthenogenesis to gametogenesis in the cladoceran Moina macrocopa. Aquat Ecol 37:251–255

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants FONDECYT 3110176 to A. A.-A, and FONDECYT 1120958 to R. R.-J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Aránguiz-Acuña.

Additional information

Communicated by Steven Kohler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aránguiz-Acuña, A., Ramos-Jiliberto, R. & Serra, M. Zooplankton competition promotes trade-offs affecting diapause in rotifers. Oecologia 177, 273–279 (2015). https://doi.org/10.1007/s00442-014-3172-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-3172-7

Keywords

Navigation