Skip to main content

Advertisement

Log in

Food web complexity and stability across habitat connectivity gradients

  • Concepts, Reviews and Syntheses
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The effects of habitat connectivity on food webs have been studied both empirically and theoretically, yet the question of whether empirical results support theoretical predictions for any food web metric other than species richness has received little attention. Our synthesis brings together theory and empirical evidence for how habitat connectivity affects both food web stability and complexity. Food web stability is often predicted to be greatest at intermediate levels of connectivity, representing a compromise between the stabilizing effects of dispersal via rescue effects and prey switching, and the destabilizing effects of dispersal via regional synchronization of population dynamics. Empirical studies of food web stability generally support both this pattern and underlying mechanisms. Food chain length has been predicted to have both increasing and unimodal relationships with connectivity as a result of predators being constrained by the patch occupancy of their prey. Although both patterns have been documented empirically, the underlying mechanisms may differ from those predicted by models. In terms of other measures of food web complexity, habitat connectivity has been empirically found to generally increase link density but either reduce or have no effect on connectance, whereas a unimodal relationship is expected. In general, there is growing concordance between empirical patterns and theoretical predictions for some effects of habitat connectivity on food webs, but many predictions remain to be tested over a full connectivity gradient, and empirical metrics of complexity are rarely modeled. Closing these gaps will allow a deeper understanding of how natural and anthropogenic changes in connectivity can affect real food webs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amarasekare P (2008) Spatial dynamics of foodwebs. Annu Rev Ecol Evol Syst 39:479–500

    Article  Google Scholar 

  • Bascompte J, Sole RV (1998) Effects of habitat destruction in a prey–predator metapopulation model. J Theor Biol 195:383–393

    Article  PubMed  Google Scholar 

  • Basset A, Deangelis DL, Diffendorfer JE (1997) The effect of functional response on stability of a grazer population on a landscape. Ecol Model 101:153–162

    Article  Google Scholar 

  • Bonsall MB, French DR, Hassell MP (2002) Metapopulation structures affect persistence of predator–prey interactions. J Anim Ecol 71:1075–1084

    Article  Google Scholar 

  • Bonsall MB, Bull JC, Pickup NJ, Hassell MP (2005) Indirect effects and spatial scaling affect the persistence of multispecies metapopulations. Proc R Soc Biol Sci Ser B 272:1465–1471

    Article  Google Scholar 

  • Briggs CJ, Hoopes MF (2004) Stabilizing effects in spatial parasitoid–host and predator–prey models: a review. Theor Popul Biol 65:299–315

    Article  PubMed  Google Scholar 

  • Cadenasso ML, Pickett STA (2001) Effect of edge structure on the flux of species into forest interiors. Conserv Biol 15:91–97

    Article  Google Scholar 

  • Cadotte MW (2006) Dispersal and species diversity: a meta-analysis. Am Nat 167:913–924

    Article  PubMed  Google Scholar 

  • Cuddington K, Yodzis P (2000) Diffusion-limited predator–prey dynamics in euclidean environments: an allometric individual-based model. Theor Popul Biol 58:259–278

    Article  CAS  PubMed  Google Scholar 

  • De Roos AM, McCauley E, Wilson WG (1991) Mobility versus density-limited predator–prey dynamics on different spatial scales. Proc R Soc Biol Sci Ser B 246:117–122

    Article  Google Scholar 

  • DeAngelis DL (1975) Stability and connectance in food web models. Ecology 56:238–243

    Article  Google Scholar 

  • Dunne JA, Williams RJ, Martinez ND (2002) Food-web structure and network theory: the role of connectance and size. Proc Natl Acad Sci USA 99:12917–12922

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elton C (1927) Animal ecology. Sidgwick and Jackson, London

    Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Fenoglio MS, Srivastava D, Valladares G, Cagnolo L, Salvo A (2012) Forest fragmentation reduces parasitism via species loss at multiple trophic levels. Ecology 93:2407–2420

    Article  PubMed  Google Scholar 

  • Gause GF (1934) The struggle for existence. Williams and Wilkins, Baltimore

    Book  Google Scholar 

  • Gilbert FS, Gonzalez A, Evans-Freke I (1998) Corridors maintain species richness in fragmented landscapes of a natural microecosystem. Proc R Soc Biol Sci Ser B 265:577–582

    Article  Google Scholar 

  • Gouhier TC, Guichard F, Gonzalez A (2010) Synchrony and stability of food webs in metacommunities. Am Nat 175:E16–E34

    Article  PubMed  Google Scholar 

  • Gravel D, Canard E, Guichard F, Mouquet N (2011a) Persistence increases with diversity and connectance in trophic metacommunities. PLoS One 6:e19374

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gravel D, Massol F, Canard E, Mouillot D, Mouquet N (2011b) Trophic theory of island biogeography. Ecol Lett 14:1010–1016

    Article  PubMed  Google Scholar 

  • Greig HS, Kratina P, Thompson PL, Palen WJ, Richardson JS, Shurin JB (2012) Warming, eutrophication, and predator loss amplify subsidies between aquatic and terrestrial ecosystems. Glob Change Biol 18:504–514

    Article  Google Scholar 

  • Hassell MP, Comins HN, May RM (1991) Spatial structure and chaos in insect population-dynamics. Nature 353:255–258

    Article  Google Scholar 

  • Holling CS (1959) The components of predation as revealed by a study of small-mammal predation of the european sawfly. Can Entomol 91:293–320

    Article  Google Scholar 

  • Holt RD (1993) Ecology at the mesoscale: the influence of regional processes on local communities. In: Ricklefs RE, Schluter D (eds) Species diversity in ecological communities. University of Chicago Press, Chicago, pp 77–88

    Google Scholar 

  • Holt RD (1996) Food webs in space: An island biogeographical perspective. In: Polis GA, Winemiller KO (eds) Food webs: integration of patterns and dynamics. Chapman and Hall, New York, pp 313–323

    Chapter  Google Scholar 

  • Holt RD (1997) Community modules. In: Gange AC, Brown VK (eds) Multitrophic interactions in terrestrial systems: the 36th Symp British Ecological Society. Blackwell Science, John Wiley & Sons, Hoboken, pp 333–350

  • Holt RD (2009) Toward a trophic island biogeography. In: Losos JB, Ricklefs RE (eds) The theory of island biogeography revisited. Princeton University Press, Princeton, pp 143–185

    Google Scholar 

  • Holt RD, Hoopes MF (2005) Food web dynamics in a metacommunity context. In: Holyoak M, Leibold MA, Holt RD (eds) Metacommunities spatial dynamics and ecological communities. The University of Chicago Press, Chicago, pp 68–93

    Google Scholar 

  • Holt RD, Lawton JH (1994) The ecological consequences of shared natural enemies. Annu Rev Ecol Syst 25:495–520

    Article  Google Scholar 

  • Holt RD, Lawton JH, Polis GA, Martinez ND (1999) Trophic rank and the species-area relationship. Ecology 80:1495–1504

    Article  Google Scholar 

  • Holyoak M (2000a) Habitat patch arrangement and metapopulation persistence of predators and prey. Am Nat 156:378–389

    Article  Google Scholar 

  • Holyoak M (2000b) Habitat subdivision causes changes in food web structure. Ecol Lett 3:509–515

    Article  Google Scholar 

  • Howeth JG, Leibold MA (2010) Species dispersal rates alter diversity and ecosystem stability in pond metacommunities. Ecology 91:2727–2741

    Article  PubMed  Google Scholar 

  • Hoyle M, Gilbert F (2004) Species richness of moss landscapes unaffected by short-term fragmentation. Oikos 105:359–367

    Article  Google Scholar 

  • Huffaker CB (1958) Experimental studies on predation: dispersion factors and predator-prey oscillations. Hilgardia 27:795–835

    Article  Google Scholar 

  • Ives AR, Carpenter SR (2007) Stability and diversity of ecosystems. Science 317:58–62

    Article  CAS  PubMed  Google Scholar 

  • Jansen VAA (1995) Regulation of predator-prey systems through spatial interactions: a possible solution to the paradox of enrichment. Oikos 74:384–390

    Article  Google Scholar 

  • Kaartinen R, Roslin T (2011) Shrinking by numbers: landscape context affects the species composition but not the quantitative structure of local food webs. J Anim Ecol 80:622–631

    Article  PubMed  Google Scholar 

  • Komonen A, Penttila R, Lindgren M, Hanski I (2000) Forest fragmentation truncates a food chain based on an old-growth forest bracket fungus. Oikos 90:119–126

    Article  Google Scholar 

  • Layman CA, Quattrochi JP, Peyer CM, Allgeier JE (2007) Niche width collapse in a resilient top predator following ecosystem fragmentation. Ecol Lett 10:937–944

    Article  PubMed Central  PubMed  Google Scholar 

  • Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613

    Article  Google Scholar 

  • Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Entomol Soc Am 15:237–240

    Google Scholar 

  • Liebhold A, Koenig WD, Bjornstad ON (2004) Spatial synchrony in population dynamics. Annu Rev Ecol Evol Syst 35:467–490

    Article  Google Scholar 

  • Lin WT, Hsieh CH, Miki T (2013) Difference inadaptive dispersal ability can promote species coexistence in fluctuating environments. PLoS One 8:e55218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lookingbill TR, Gardner RH, Ferrari JR, Keller CE (2010) Combining a dispersal model with network theory to assess habitat connectivity. Ecol Appl 20:427–441

    Article  PubMed  Google Scholar 

  • Loreau M, Mouquet N, Gonzalez A (2003) Biodiversity as spatial insurance in heterogeneous landscapes. Proc Natl Acad Sci USA 100:12765–12770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton Universtiy Press, Princeton

    Google Scholar 

  • Martinez ND (1992) Constant connectance in community food webs. Am Nat 139:1208–1218

    Article  Google Scholar 

  • Matter SF, Ezzeddine M, Duermit E, Mashburn J, Hamilton R, Lucas T, Roland J (2009) Interactions between habitat quality and connectivity affect immigration but not abundance or population growth of the butterfly, Parnassius smintheus. Oikos 118:1461–1470

    Article  Google Scholar 

  • May RM (1973) Stability and complexity in model ecosystems. Princeton University Press, Princeton

    Google Scholar 

  • May RM (1994) The effects of spatial scale on ecological questions and answers. In: Edwards PJ, May RM, Webb NR (eds) Large scale ecology and conservation biology. Blackwell Scientific Publications, Oxford, pp 1–17

    Google Scholar 

  • McCann KS (2000) The diversity–stability debate. Nature 405:228–233

    Article  CAS  PubMed  Google Scholar 

  • McCann KS, Rasmussen JB, Umbanhowar J (2005) The dynamics of spatially coupled food webs. Ecol Lett 8:513–523

    Article  CAS  PubMed  Google Scholar 

  • McCauley E, Wilson WG, de Roos AM (1993) Dynamics of age-structured and spatially structured predator–prey interactions: individual-based models and population-level formulations. Am Nat 142:412–442

    Article  CAS  PubMed  Google Scholar 

  • McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453

    Article  PubMed  Google Scholar 

  • Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83:1131–1145

    Article  Google Scholar 

  • Murakami M, Hirao T, Kasei A (2008) Effects of habitat configuration on host–parasitoid food web structure. Ecol Res 23:1039–1049

    Article  Google Scholar 

  • Murdoch WW (1977) Stabilizing effects of spatial heterogeneity in predator–prey systems. Theor Popul Biol 11:252–273

    Article  CAS  PubMed  Google Scholar 

  • Murdoch WW, Avery S, Smyth MEB (1975) Switching in predatory fish. Ecology 56:1094–1105

    Article  Google Scholar 

  • Myers JH (1976) Distribution and dispersal in populations capable of resource depletion: a simulation model. Oecologia 23:255–269

    Article  Google Scholar 

  • Opermanis O, MacSharry B, Aunins A, Sipkova Z (2012) Connectedness and connectivity of the Natura 2000 network of protected areas across country borders in the European Union. Biol Conserv 153:227–238

    Article  Google Scholar 

  • Paillex A, Castella E, Carron G (2007) Aquatic macroinvertebrate response along a gradient of lateral connectivity in river floodplain channels. J North Am Benthol Soc 26:779–796

    Article  Google Scholar 

  • Piechnik DA, Lawler SP, Martinez ND (2008) Food-web assembly during a classic biogeographic study: species’ “Trophic breadth” corresponds to colonization order. Oikos 117:665–674

    Article  Google Scholar 

  • Pillai P, Loreau M, Gonzalez A (2010) A patch-dynamic framework for food web metacommunities. Theor Ecol 3:223–237

    Article  Google Scholar 

  • Pillai P, Gonzalez A, Loreau M (2011) Metacommunity theory explains the emergence of food web complexity. Proc Natl Acad Sci USA 108:19293–19298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pimm SL (1982) Food webs. Chapman and Hall, London

    Book  Google Scholar 

  • Pimm SL, Lawton JH (1978) Feeding on more than one trophic level. Nature 275:542–544

    Article  Google Scholar 

  • Pimm SL, Lawton JH, Cohen JE (1991) Food web patterns and their consequences. Nature 350:669–674

    Article  Google Scholar 

  • Polis GA, Hurd SD (1995) Extraordinarily high spider densities on islands—flow of energy from the marine to terrestrial food webs and the absence of predation. Proc Natl Acad Sci USA 92:4382–4386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Post DM (2002) The long and short of food-chain length. Trends Ecol Evol 17:269–277

    Article  Google Scholar 

  • Prevedello JA, Vieira MV (2010) Does the type of matrix matter? A quantitative review of the evidence. Biodivers Conserv 19:1205–1223

    Article  Google Scholar 

  • Prugh LR, Hodges KE, Sinclair ARE, Brashares JS (2008) Effect of habitat area and isolation on fragmented animal populations. Proc Natl Acad Sci USA 105:20770–20775

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roach KA, Thorp JH, Delong MD (2009) Influence of lateral gradients of hydrologic connectivity on trophic positions of fishes in the upper Mississippi river. Freshw Biol 54:607–620

    Article  Google Scholar 

  • Rooney N, McCann KS, Moore JC (2008) A landscape theory for food web architecture. Ecol Lett 11:867–881

    Article  PubMed  Google Scholar 

  • Rose MD, Polis GA (1998) The distribution and abundance of coyotes: the effects of allochthonous food subsidies from the sea. Ecology 79:998–1007

    Article  Google Scholar 

  • Scheid BE, Thies C, Tscharntke T (2011) Enhancing rape pollen beetle parasitism within sown flower fields along a landscape complexity gradient. Agric Entomol 13:173–179

    Article  Google Scholar 

  • Schneider K, Scheu S, Maraun M (2007) Microarthropod density and diversity respond little to spatial isolation. Basic Appl Ecol 8:26–35

    Article  Google Scholar 

  • Shackell NL, Fisher JAD, Frank KT, Lawton P (2012) Spatial scale of similarity as an indicator of metacommunity stability in exploited marine systems. Ecol Appl 22:336–348

    Article  PubMed  Google Scholar 

  • Shulman RS, Chase JM (2007) Increasing isolation reduces predator: prey species richness ratios in aquatic food webs. Oikos 116:1581–1587

    Article  Google Scholar 

  • Simberloff DS, Wilson EO (1969) Experimental zoogeography of islands—coloniation of empty islands. Ecology 50:278

    Article  Google Scholar 

  • Simberloff DS, Wilson EO (1970) Experimental zoogeography of island—a 2-year record of colonization. Ecology 51:934

    Article  Google Scholar 

  • Spencer M (1997) The effects of habitat size and energy on food web structure: an individual-based cellular automata model. Ecol Model 94:299–316

    Article  Google Scholar 

  • Staddon P, Lindo Z, Crittenden PD, Gilbert F, Gonzalez A (2010) Connectivity, non-random extinction and ecosystem function in experimental metacommunities. Ecol Lett 13:543–552

    Article  PubMed  Google Scholar 

  • Starzomski BM, Srivastava DS (2007) Landscape geometry determines community response to disturbance. Oikos 116:690–699

    Article  Google Scholar 

  • Terborgh J, Lopez L, Nunez P, Rao M, Shahabuddin G, Orihuela G, Riveros M, Ascanio R, Adler GH, Lambert TD, Balbas L (2001) Ecological meltdown in predator-free forest fragments. Science 294:1923–1926

    Article  CAS  PubMed  Google Scholar 

  • Tischendorf L, Fahrig L (2000) How should we measure landscape connectivity? Landsc Ecol 15:633–641

    Article  Google Scholar 

  • Valladares G, Cagnolo L, Salvo A (2012) Forest fragmentation leads to food web contraction. Oikos 121:299–305

    Article  Google Scholar 

  • Vandermeer J (1973) Regional stabilization of locally unstable predator–prey relationships. J Theor Biol 41:161–170

    Article  CAS  PubMed  Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) River continnum concept. Can J Fish Aquat Sci 37:130–137

    Article  Google Scholar 

  • Vasseur DA, Fox JW (2009) Phase-locking and environmental fluctuations generate synchrony in a predator-–rey community. Nature 460:1007–1007

    Article  CAS  PubMed  Google Scholar 

  • Vogwill T, Fenton A, Brockhurst MA (2009) Dispersal and natural enemies interact to drive spatial synchrony and decrease stability in patchy populations. Ecol Lett 12:1194–1200

    Article  PubMed  Google Scholar 

  • Warren PH (1994) Making connections in food webs. Trends Ecol Evol 9:136–141

    Article  CAS  PubMed  Google Scholar 

  • Watling JI, Donnelly MA (2006) Fragments as islands: a synthesis of faunal responses to habitat patchiness. Conserv Biol 20:1016–1025

    Article  PubMed  Google Scholar 

  • Willson MF, Gende SM, Bisson PA (2004) Anadromous fishes as ecological links beween ocean, fresh water, and land. In: Polis GA, Power ME, Huxel GR (eds) Food webs at the landscape level. The University of Chicago Press, Chicago, pp 284–300

    Google Scholar 

  • Wilson HB, Hassell MP, Holt RD (1998) Persistence and area effects in a stochastic tritrophic model. Am Nat 151:587–595

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded with the assistance of the Government of Canada/avec l’appui du Gouvernement du Canada, by doctoral, postdoctoral and Discovery grants from the Natural Sciences and Engineering Research Council of Canada to RML, PK and DS, respectively. We also thank Jana Petermann, Andrew MacDonald, Nathan Kraft, Hamish Greig, and Ross Thompson for valuable comments that improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Kratina.

Additional information

Communicated by Raphael Didham.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 125 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LeCraw, R.M., Kratina, P. & Srivastava, D.S. Food web complexity and stability across habitat connectivity gradients. Oecologia 176, 903–915 (2014). https://doi.org/10.1007/s00442-014-3083-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-3083-7

Keywords

Navigation