Skip to main content
Log in

Maintenance of polymorphic females: do parasites play a role?

  • Behavioral ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The role of parasites in explaining maintenance of polymorphism is an unexplored research avenue. In odonates, female-limited color polymorphism (one female morph mimicking the conspecific male and one or more gynochromatic morphs) is widespread. Here we investigated whether parasitism contributes to color polymorphism maintenance by studying six species of female dimorphic damselflies using large databases of field-collected animals. We predicted that androchrome females (male mimics) would be more intensively parasitized than gynochrome females which is, according to previous studies, counterbalanced by the advantages of the former when evading male harassment compared to gynochrome females. Here we show that in Ischnura denticollis and Enallagma novahispaniae, androchrome females suffer from a higher degree of parasitism than gynochromatic females, and contrary to prediction, than males. Thus, our study has detected a correlation between color polymorphism and parasitic burden in odonates. This leads us to hypothesize that natural selection, via parasite pressure, can explain in part how androchrome and gynochrome female color morphs can be maintained. Both morphs may cope with parasites in a different way: given that androchrome females are more heavily parasitized, they may pay a higher fecundity costs, in comparison to gynochrome females.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbott J, Gosden T (2009) Correlated morphological and colour differences among females of the damselfly Ischnura elegans. Ecol Entomol 34:378–386. doi:10.1111/j.1365-2311.2009.01087.x

    Article  CAS  Google Scholar 

  • Abbott J, Svensson EI (2008) Ontogeny of sexual dimorphism and phenotypic integration in heritable morphs. Evol Ecol 22:103–121. doi:10.1007/s10682-007-9161-0

    Article  Google Scholar 

  • Åbro A (1971) Gregarines: their effects on damselflies (Odonata: Zygoptera). Entomol Scand 2:294–300

    Article  Google Scholar 

  • Åbro A (1974) Gregarine infection in different species of Odonata from the same habitat. Zool Scr 3:111–120

    Article  Google Scholar 

  • Andrés JA, Cordero A (1999) The inheritance of female colour morphs in the damselfly Ceriagrion tenellum (Odonata, Coenagrionidae). Heredity 82:328–335. doi:10.1038/sj.hdy.6884930

    Article  PubMed  Google Scholar 

  • Andrés JA, Sánchez-Guillén RA, Cordero-Rivera A (2000) Molecular evidence for selection on female colour polymorphism in the damselfly Ischnura graellsii. Evolution 54:2156–2161. doi:10.1111/j.0014-3820.2000.tb01258.x

    PubMed  Google Scholar 

  • Andrés JA, Sánchez-Guillén RA, Cordero-Rivera A (2002) Evolution of female colour polymorphism in damselflies: testing the hypotheses. Anim Behav 63:677–685. doi:10.1006/anbe.2001.1948

    Article  Google Scholar 

  • Banham WMT (1990) Non-random mating in the polymorphic damselfly Ischnura elegans. PhD dissertation. University of Manchester. UK

  • Bolker B, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Henry M, Stevens H, Simone J, White S (2008) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135. doi:10.1016/j.tree.2008.10.008

    Article  Google Scholar 

  • Boswell T, Takeuchi S (2005) Recent developments in our understanding of the avian melanocortin system: its involvement in the regulation of pigmentation and energy homeostasis. Peptides 26:1733–1743. http://dx.doi.org/10.1016/j.peptides.2004.11.039

  • Bots J, De Bruyn L, Van Dongen S, Smolders R, Van Gossum H (2009) Female polymorphism, condition differences, and variation in male harassment and ambient temperature. Biol J Linn Soc 97:545–554. doi:10.1111/j.1095-8312.2009.01238.x

    Article  Google Scholar 

  • Canales-Lazcano J, Contreras-Garduño J, Córdoba-Aguilar A (2005) Fitness-related attributes and gregarine burden in a non-territorial damselfly Enallagma praevarum Hagen (Zygoptera: Coenagrionidae). Odonatologica 34:123–130

    Google Scholar 

  • Choe JC, Crespi BJ (1997) The evolution of mating systems in insects and arachnids. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Clutton-Brock TH, Parker G (1995) Sexual coercion in animal societies. Anim Behav 49:1345–1365. doi:10.1006/anbe.1995.0166

    Article  Google Scholar 

  • Cooper (2008) Ecological causes of female-limited dimorphism in Hawaiian damselflies. PhD dissertation. Department of Biology, Indiana University, United States

  • Cordero A (1990) The inheritance of female polymorphism in the damselfly Ischnura graellsii (Rambur) (Odonata: Coenagrionidae). Heredity 64:346. doi:10.1038/hdy.1990.42

    Article  Google Scholar 

  • Cordero A (1992) Density-dependent mating success and colour polymorphism in females of the damselfly Ischnura graellsii. J Anim Ecol 61:769–780. doi:10.2307/5630

    Article  Google Scholar 

  • Cordero A, Andrés JA (1996) Colour polymorphism in Odonates: females that mimic males? J. British Dragonfly Soc 12:50–60

    Google Scholar 

  • Cordero A, Santolamazza Carbone S, Utzeri C (1998) Mating opportunities and mating costs are reduced in androchrome female damselflies Ischnura elegans (Odonata). Anim Behav 55:185–197. doi:10.1006/anbe.1997.0603

    Article  PubMed  Google Scholar 

  • Cordero-Rivera A, Egido FJ (1998) Mating frequency, population density and female polychromatism in the damselfly Ischnura graellsii: an analysis of four natural populations. Etología 6:61–67

    Google Scholar 

  • Cordero-Rivera A, Sánchez-Guillén RA (2007) Male-like females of a damselfly are not preferred by males even if they are the majority morph. Anim Behav 74:247–252. doi:10.1016/j.anbehav.2006.06.023

    Article  Google Scholar 

  • Córdoba-Aguilar A (1993) Population structure in Ischnura denticollis (Burmeister) (Zygoptera: Coenagrionidae). Odonatologica 22:455–464

    Google Scholar 

  • Córdoba-Aguilar A (2009) A female evolutionary response when survival is at risk: male harassment mediates early re-allocation of resources to increase egg number and size. Behav Ecol Sociobiol 63:751–763. doi:10.1007/s00265-009-0709-6

    Article  Google Scholar 

  • Córdoba-Aguilar A, Uhía E, Cordero-Rivera A (2003) Sperm competition in Odonata (Insecta): the evolution of female multiple mating and rivals’ sperm displacement. J Zool 261:381–398. doi:10.1017/S0952836903004357

    Article  Google Scholar 

  • Elston DA, Moss R, Boulinier T, Arrowsmith C, Lambin X (2001) Analysis of aggregation, a worked example: number of ticks on red grouse chicks. Parasitology 122:563–569. doi:10.1017/S0031182001007740

    Article  PubMed  CAS  Google Scholar 

  • Fincke OM, Jödicke R, Paulson D, Schultz T (2005) The evolution and frequency of female colour morphs in Holartic Odonata: why are male-like females typically the minority? Int J Odonat 8:183–202

    Article  Google Scholar 

  • Forbes MRL, Baker RL (1991) Condition and fecundity of the damselfly, Enallagma ebrium (Hagen)—the importance of ectoparasites. Oecologia 86:335–341. doi:10.1007/BF00317598

    Article  Google Scholar 

  • Forbes MR, Robb T (2008) Testing hypotheses about parasite mediated selection using odonate hosts. In: Dragonflies and damselflies. In: Córdoba-Aguilar A (ed) Model organisms for ecological and entomological research. Oxford University Press, UK

    Google Scholar 

  • Forbes MR, Mlynarek JJ, Allison J, Hecker KR (2012) Seasonality of gregarine parasitism in the damselfly, Nehalennia irene: understanding unimodal patterns. Parasitol. Res. doi:10.1007/s00436-011-2478-1

  • Gonzalez-Santoyo I, Córdoba-Aguilar A (2012) Phenoloxidase: a key component of the insect immune system. Entomol Exp Appl 142:1–16. doi:10.1111/j.1570-7458.2011.01187.x

    Article  CAS  Google Scholar 

  • González-Tokman DM, Córdoba-Aguilar A, Forbes MR (2012) Effect of juvenile hormone analog in a natural host-parasite system. Evol Ecol 26:1055–1066. doi:10.1007/s10682-011-9546-y

    Article  Google Scholar 

  • Gosden T (2008) The preservation of favoured morphs in the struggle between sexes. PhD dissertation. Department of Evolutionary Biology. Lund University, Sweden

  • Gosden T, Svensson EI (2009) Density-dependent male harassment, female resistance, and male mimicry. Am Nat 173:709–721. doi:10.1086/598491

    Article  PubMed  Google Scholar 

  • Hammers M, Van Gossum H (2008) Variation in female morph frequencies and mating frequencies: random, frequency-dependent harassment or male mimicry? Anim Behav 76:1403–1410. doi:10.1016/j.anbehav.2008.06.021

    Article  Google Scholar 

  • Hammers M, Sánchez-Guillén RA, Van Gossum H (2009) Differences in mating propensity between immature female color morphs in the damselfly Ischnura elegans (Insecta: Odonata). J Insect Behav 22:324–337. doi:10.1007/s10905-009-9175-2

    Article  Google Scholar 

  • Hecker KR, Forbes MRL, Leonard NJ (2002) Parasitism of damselflies (Enallagma boreale) by gregarines: sex biases and relations to adult survivorship. Can J Zool 80:162–168. doi:10.1139/Z01-213

    Article  Google Scholar 

  • Hinnekint BON (1987) Population dynamics of Ischnura elegans (Vander Linden) (Insecta: Odonata) with special reference to morphological colour changes, female polymorphism, multiannual cycles and their influence on behaviour. Hydrobiologia 146:3–31

    Article  Google Scholar 

  • Iserbyt A, Bots J, Van Dongen S, Ting JJ, Van Gossum H, Sherratt TN (2011) Frequency-dependent variation in mimetic fidelity in an intraspecific mimicry system. Proc R Soc Lond [Biol.]. doi:10.1098/rspb.2011.0126

  • Johnson C (1964) The inheritance of female dimorphism in the damselfly Ischnura damula. Genetics 49:513–519

    PubMed  CAS  Google Scholar 

  • Johnson C (1966) Genetics of female dimorphism in Ischnura demorsa. Heredity 21:453–459

    Article  Google Scholar 

  • Joop G, Mitschke A, Rolff J, Siva-Jothy MT (2006) Immune function and parasite resistance in male and polymorphic female Coenagrion puella. BMC Evol Biol 6:19. doi:10.1186/1471-2148-6-19

    Article  PubMed  Google Scholar 

  • McKinnon JS, Pierotti M (2010) Colour polymorphism and correlated characters: genetic mechanisms and evolution. Mol Ecol 19:5101–5125. doi:10.1111/j.1365-294X.2010.04846.x

    Article  PubMed  Google Scholar 

  • Moore SL, Wilson K (2002) Parasites as a viability cost of sexual selection in natural populations of mammals. Science 297:2015–2018. doi:10.1126/science.1074196

    Article  PubMed  CAS  Google Scholar 

  • Nagel L, Robb T, Forbes MRL (2010) Inter-annual variation in prevalence and intensity of mite parasitism relates to appearance and expression of damselfly resistance. BMC Ecol 10:5. doi:10.1186/1472-6785-10-5

    Article  PubMed  Google Scholar 

  • Parker GA (1979) Sexual selection and sexual conflict. In: Blum MS, Blum NA (eds) Sexual selection and reproductive competition in insects. Academic Press, New York, pp 123–166

    Google Scholar 

  • Paterson S, Lello J (2003) Mixed models: getting the best use of parasitological data. Trends Parasitol 19:370–375. doi:10.1016/S1471-4922(03)00149-1

    Article  PubMed  Google Scholar 

  • Robertson HM (1985) Female dimorphism and mating behaviour in a damselfly, Ischnura ramburi: females mimicking males. Anim Behav 33:805–809. doi:10.1016/S0003-3472(85)80013-0

    Article  Google Scholar 

  • Rolff J (1999) Parasitism increases offspring size in a damselfly: experimental evidence for parasite-mediated maternal effects. Anim Behav 58:1105–1108. doi:10.1006/anbe.1999.1240

    Article  PubMed  Google Scholar 

  • Rolff J (2002) Bateman’s principle and immunity. Proc R Soc Lond [Biol.]. 269:867–872. doi:10.1098/rspb.2002.1959

  • Roulin A (2004) The evolution, maintenance and adaptative function of genetic colour polymorphism in birds. Biol Rev 79:815–848. doi:10.1017/S1464793104006487

    Article  PubMed  Google Scholar 

  • Sánchez-Guillén RA, Van Gossum H, Cordero-Rivera A (2005) Hybridization and the inheritance of female colour polymorphism in two Ischnurid damselflies (Odonata:Coenagrionidae). Biol J Linn Soc 85:471–481. doi:10.1111/j.1095-8312.2005.00506.x

    Article  Google Scholar 

  • Sánchez-Guillén RA, Hansson B, Wellenreuther M, Svensson EI, Cordero-Rivera A (2011) The influence of stochastic and selective forces in the population divergence of female colour polymorphism in damselflies of the genus Ischnura. Heredity Advance (online publication 18 May). doi:10.1038/hdy.2011.36

  • Schluter D (2001) Ecology and the origin of species. Trends Ecol Evol 16:372–380. doi:S0169-5347(01)02198-x

    Article  PubMed  Google Scholar 

  • Schulenburg H, Kurtz J, Moret Y, Siva-Jothy MT (2009) Introduction. Ecological immunology. Phil. Trans. R. Soc. Lond. B 364:3–14. doi:10.1098/rstb.2008.0249

    Article  Google Scholar 

  • Sherratt TN (2001) The evolution of female-limited polymorphisms in damselflies: a signal detection model. Ecol Lett 4:22–29. doi:10.1046/j.1461-0248.2001.00184.x

    Article  Google Scholar 

  • Sinervo B, Bleay C, Amadopoulou C (2001) Social causes of correlational selection and the resolution of a heritable throat color polymorphism in a lizard. Evolution 2040–2052. doi:10.1111/j.0014-3820.2001.tb01320.x

  • Sirot LK, Brockmann HJ, Marnis C, Muschett G (2003) Maintenance of a female-limited polymorphism in Ischnura ramburi (Zygoptera: Coenagrionidae). Anim Behav 66:763–775. doi:10.1006/anbe.2003.2279

    Article  Google Scholar 

  • Siva-Jothy MT, Plaistow SJ (1999) A fitness cost of eugregarine parasitism in a damselfly. Ecol Entomol 24:465–470. doi:10.1046/j.1365-2311.1999.00222.x

    Article  Google Scholar 

  • Smith BP (1988) Host-parasite interactions: impact of larval water mites on insects. Ann Rev Entomol 33:487–507. doi:10.1146/annurev.en.33.010188.002415

    Article  Google Scholar 

  • Stoks R, Córdoba-Aguilar A (2012) Evolutionary ecology of Odonata: a complex life cycle perspective. Ann Rev Entomol 57:249–265. doi:10.1146/annurev-ento-120710-100557

    Article  CAS  Google Scholar 

  • Stütz AM, Morrison CD, Argyropoulos G (2005) The Agouti-related protein and its role in energy homeostasis. Peptides 26:1771–1781. http://dx.doi.org/10.1016/j.peptides.2004.12.024

    Google Scholar 

  • Svensson EI, Abbott J, Härdling R (2005) Female polymorphism, frequency dependence, and rapid evolutionary dynamics in natural populations. Am Nat 165:567–576. doi:10.1086/429278

    Article  PubMed  Google Scholar 

  • Takahashi Y, Watanabe M (2010) Female reproductive success is affected by selective male harassment in the damselfly Ischnura senegalensis. Anim Behav 79:211–216. doi:10.1016/j.anbehav.2009.10.032

    Article  Google Scholar 

  • Takahashi Y, Watanabe M (2011) Male mate choice based on ontogenetic colour changes of females in the damselfly Ischnura senegalensis. J Ethol. doi:10.1007/s10164-010-0257-6

  • Taylor PD, Merriam G (1996) Habitat fragmentation and parasitism of a forest damselfly. Landsc Ecol 11:181–189. doi:10.1007/BF02447516

    Article  Google Scholar 

  • Van Gossum H, Bots J, Van Heusden J, Hammers M, Huyghe M, Morehouse N (2011) Reflectance spectra and mating patterns support intraspecific mimicry in the colour polymorphic damselfly Ischnura elegans. Evol Ecol 25:139–154. doi:10.1007/s10682-010-9388-z

    Article  Google Scholar 

  • Yourth CP, Forbes MR, Smith BP (2001) On understanding variation in immune expression of the damselflies Lestes spp. Can J Zool 79:815–821. doi:10.1139/cjz-79-5-815

    Google Scholar 

  • Zuk M, Mckean KA (1996) Sex differences in parasite infections: patterns and processes. Int J Parasitol 26:1009–1023. doi:10.1016/S0020-7519(96)8000

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Haydeé Peralta Vázquez and Jorge Canales Lazcano for their help during field work and Jesús Ramsés Chávez Ríos provided valuable comments on earlier versions of the manuscript. Thanks also to Thomas Hoffmeister for key comments to an earlier version. This research was funded by a PAPIIT grant IN 204610. RSG is supported by a postdoctoral grant (Dirección General de Asunto del Personal Académico) from Universidad Nacional Autónoma de México. Collection of animals complies with the current laws of Mexico and Canada.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. A. Sánchez-Guillén or A. Córdoba-Aguilar.

Additional information

Communicated by Thomas Hoffmeister.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Guillén, R.A., Martínez-Zamilpa, S.M.J., Jiménez-Cortés, J.G. et al. Maintenance of polymorphic females: do parasites play a role?. Oecologia 171, 105–113 (2013). https://doi.org/10.1007/s00442-012-2388-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-012-2388-7

Keywords

Navigation