Skip to main content
Log in

Opportunistic predator prefers habitat complexity that exposes prey while reducing cannibalism and intraguild encounters

  • Behavioral ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Structural features of habitat are known to affect the density of predators and prey, and it is generally accepted that complexity provides some protection from the environment and predators but may also reduce foraging success. A next step in understanding these interactions is to decouple the impacts of both spatial and trophic ingredients of complexity to explicitly explore the trade-offs between the habitat, its effects on foraging success, and the competition that ensues as predator densities increase. We quantified the accumulation of spiders and their prey in habitat islands with different habitat complexities created in the field using natural plants, plant debris and plastic plant mimics. Spiders were observed at higher densities in the complex habitat structure composed of both live plants and thatch. However, the numerically dominant predator in the system, the wolf spider Pardosa milvina, was observed at high densities in habitat islands containing plastic mimics of plants and thatch. In a laboratory experiment, we examined the interactive effects of conspecific density and habitat on the prey capture of P. milvina. Thatch, with or without vertical plant structure, reduced prey capture, but the plastic fiber did not. Pairwise interactions among spiders reduced prey capture, but this effect was moderated by thatch. Taken together, these experiments highlight the flexibility of one important predator in the food web, where multiple environmental cues intersect to explain the role of habitat complexity in determining generalist predator accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson JF (1974) Responses to starvation in the spiders Lycosa lenta Hentz and Filistata hibernalis Hentz. Ecology 55:576–585

    Article  Google Scholar 

  • Andow DA (1991) Vegetational diversity and arthropod population response. Annu Rev Entomol 36:561–586

    Article  Google Scholar 

  • Andow DA, Prokrym DR (1990) Plant structural complexity and host-finding by a parasitoid. Oecologia 82:162–165

    Article  Google Scholar 

  • Balfour RA, Buddle CM, Rypstra AL, Walker SE, Marshall SD (2003) Ontogenetic shifts in competitive interactions and intraguild predation between two wolf spider species. Ecol Entomol 28:25–30. doi:10.1046/j.1365-2311.2002.00486.x

    Article  Google Scholar 

  • Beck MW (2000) Separating the elements of habitat structure: independent effects of habitat complexity and structural components on rocky intertidal gastropods. J Exp Mar Biol Ecol 249:29–49

    Article  PubMed  Google Scholar 

  • Bell SS, McCoy ED, Muchinsky HR (1991) Habitat structure: the physical arrangement of objects in space. Chapman and Hall, London

  • Birkhofer K, Wise DH, Scheu S (2008) Subsidy from the detrital food web, but not microhabitat complexity, affects the role of generalist predators in an aboveground herbivore food web. Oikos 117:494–500. doi:10.1111/oik.2008.117.issue-4

    Article  Google Scholar 

  • Buddle CM (2002) Interactions among young stages of the wolf spiders Pardosa moesta and P. mackenziana (Araneae: Lycosidae). Oikos 96:130–136

    Article  Google Scholar 

  • Buddle CM, Walker SE, Rypstra AL (2003) Cannibalism and density-dependent mortality in the wolf spider Pardosa milvina (Araneae: Lycosidae). Can J Zool 81:1293–1297. doi:10.1139/Z03-124

    Article  Google Scholar 

  • Bultman TL, Uetz GW (1982) Abundance and community structure of forest floor spiders following litter manipulation. Oecologia 55:34–41. doi:10.1007/BF00386715

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Carter PE, Rypstra AL (1995) Top-down effects in soybean agroecosystems: spider density affects herbivore damage. Oikos 72:433–439

    Article  Google Scholar 

  • Chen BR, Wise DH (1999) Bottom-up limitation of predaceous arthropods in a detritus-based terrestrial food web. Ecology 80:761–772

    Article  Google Scholar 

  • Clark ME, Wolcott TG, Wolcott DL, Hines AH (1999) Intraspecific interference among foraging blue crabs Callinectes sapidus: interactive effects of predator density and prey patch distribution. Mar Ecol Prog Ser 178:69–78

    Article  Google Scholar 

  • Crowder LB, Cooper WE (1982) Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63:1802–1813

    Article  Google Scholar 

  • Denno RF, McClure MS (1983) Variable plants and herbivores in natural and managed systems. Academic, New York

  • Denno RF, Finke DL, Langellotto GA (2005) Direct and indirect effects of vegetation structure and habitat complexity on predator–prey and predator–predator interactions. In: Barbosa P, Castellanos I (eds) Ecology of predator–prey interactions. Oxford University Press, Oxford, pp 211–239

    Google Scholar 

  • DeVito J, Meik J, Gerson M, Formanowicz D (2004) Physiological tolerances of three sympatric riparian wolf spiders (Araneae: Lycosidae) correspond with microhabitat distributions. Can J Zool 82:1119–1125

    Article  Google Scholar 

  • Drapela TD, Moser J, Zaller G, Frank T (2008) Spider assemblages in winter oilseed rape affected by landscape and site factors. Ecography 31:254–262. doi:10.1111/eco.2008.31.issue-2

    Article  Google Scholar 

  • Finke DL, Denno RF (2002) Intraguild predation diminished in complex-structured vegetation: implications for prey suppression. Ecology 83:643–652

    Article  Google Scholar 

  • Finke DL, Denno RF (2004) Predator diversity dampens trophic cascades. Nature 429:407–410

    Article  CAS  PubMed  Google Scholar 

  • Finke DL, Denno RF (2006) Spatial refuge from intraguild predation: implications for prey suppression and trophic cascades. Oecologia 149:265–275. doi:10.1007/s00442-006-0443-y

    Article  PubMed  Google Scholar 

  • Finke DL, Snyder W (2008) Niche partitioning increases resource exploitation by diverse communities. Science 321:1488–1490

    Article  CAS  PubMed  Google Scholar 

  • Foelix RF (1996) Biology of spiders, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Folz HC, Wilder SM, Persons MH, Rypstra AL (2006) Effects of predation risk on vertical habitat use and foraging of Pardosa milvina. Ethology 112:1152–1158

    Article  Google Scholar 

  • Grabowski JH, Hughes AR, Kimbro DL (2008) Habitat complexity influences cascading effects of multiple predators. Ecology 89:3413–3422

    Article  PubMed  Google Scholar 

  • Gratton C, Denno RF (2003) Seasonal shift from bottom-up to top-down impact in phytophagous insect populations. Oecologia 134:487–495. doi:10.1007/s00442-002-1137-8

    PubMed  Google Scholar 

  • Halaj J, Wise DH (2001) Terrestrial trophic cascades: how much do they trickle? Am Nat 157:262–281

    Article  CAS  PubMed  Google Scholar 

  • Halaj J, Wise DH (2002) Impact of a detrital subsidy on trophic cascades in a terrestrial grazing food web. Ecology 83:3141–3151

    Article  Google Scholar 

  • Halaj JD, Ross W, Moldenke AR (1998) Habitat structure and prey availability as predictors of the abundance and community organization of spiders in western Oregon forest canopies. J Arachnol 26:203–220

    Google Scholar 

  • Halaj JD, Cady AB, Uetz GW (2000) Modular habitat refugia enhance generalist predators and lower plant damage in soybeans. Environ Entomol 29:383–393

    Article  Google Scholar 

  • Harwood JD, Sunderland KD, Symondson WOC (2003) Web location by linyphiid spiders: prey-specific aggregation and foraging strategies. J Anim Ecol 72:745–756. doi:10.1046/j.1365-2656.2003.00746.x

    Article  Google Scholar 

  • Hayse J, Wissing T (1996) Effects of stem density of artificial vegetation on abundance and growth of age-0 bluegills and predation by largemouth bass. T Am Fish Soc 125:422–433

    Article  Google Scholar 

  • Heck KL Jr, Crowder LB (1991) Habitat structure and predator–prey interactions in vegetated aquatic systems. In: Bell SS, McCoy ED, Muchinsky HR (eds) Habitat structure: the physical arrangement of objects in space. Chapman and Hall, London, pp 281–299

    Google Scholar 

  • Henschel JD, Ward Lubin Y (1992) The importance of thermal factors for nest-site selection, web construction and behavior of Stegodyphus lineatus (Araneae: Eresidae) in the Negev Desert. J Therm Biol 17:97–106

    Article  Google Scholar 

  • Hlivko JT, Rypstra AL (2003) Spiders reduce herbivory: nonlethal effects of spiders on the consumption of soybean leaves by beetle pests. Ann Entomol Soc Am 96:914–919. doi:10.1043/0013-8746(2003)096(0914:SRHNEO)2.0.CO;2

    Article  Google Scholar 

  • Hoefler CD, Persons MH, Rypstra AL (2008) Evolutionarily costly courtship displays in a wolf spider: a test of viability indicator theory. Behav Ecol 19:974–979. doi:10.1093/beheco/arn055

    Article  Google Scholar 

  • Huffaker CB (1958) Experimental studies on predation: dispersion factors and predator–prey oscillations. Hilgardia 27:343–383

    Google Scholar 

  • Jakob EM, Marshall SD, Uetz GW (1996) Estimating fitness: a comparison of body condition indices. Oikos 77:61–67

    Article  Google Scholar 

  • Janssen AM, Sabelis W, Magalhaes S, Montserrat M, Van der Hammen T (2007) Habitat structure affects intraguild predation. Ecology 88:2713–2719

    Article  PubMed  Google Scholar 

  • Kemp JC, Barrett GW (1989) Spatial patterning: impacts of uncultivated corridors on arthropod populations within soybean agroecosystems. Ecology 70:114–128

    Article  Google Scholar 

  • Langellotto GA, Denno RF (2004) Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia 139:1–10. doi:10.1007/s00442-004-1497-3

    Article  PubMed  Google Scholar 

  • Langellotto GA, Denno RF (2006) Refuge from cannibalism in complex-structured habitats: implications for the accumulation of invertebrate predators. Ecol Entomol 31:575–581

    Article  Google Scholar 

  • Lawton JH (1983) Plant architecture and the diversity of phytophagous insects. Annu Rev Entomol 28:23–39

    Article  Google Scholar 

  • Legrand A, Barbosa P (2003) Plant morphological complexity impacts foraging efficiency of adult Coccinella septempunctata L. (Coleoptera: Coccinellidae). Environ Entomol 32:1219–1226

    Article  Google Scholar 

  • Lepori FD, Palm D, Brannas E, Malmqvist B (2005) Does restoration of structural heterogeneity in streams enhance fish and macroinvertebrate diversity? Ecol Appl 15:2060–2071

    Article  Google Scholar 

  • Lukianchuk JL, Smith SM (1997) Influence of plant structural complexity on the foraging success of Trichogramma minutum: a comparison of search on artificial and foliage models. Entomol Exp Appl 84:221–228. doi:10.1046/j.1570-7458.1997.00219.x

    Google Scholar 

  • MacArthur RH, MacArthur JW (1961) On bird species diversity. Ecology 42:728–739

    Article  Google Scholar 

  • Marshall SD, Rypstra AL (1999) Spider competition in structurally simple ecosystems. J Arachnol 27:343–350

    CAS  Google Scholar 

  • Marshall SD, Walker SE, Rypstra AL (2000) A test for a differential colonization and competitive ability in two generalist predators. Ecology 81:3341–3349

    Article  Google Scholar 

  • Marshall SD, Pavuk D, Rypstra AL (2002) A comparative study of phenology and daily activity patterns in the wolf spiders Pardosa milvina and Hogna helluo in soybean agroecosystems in southwestern Ohio (Araneae, Lycosidae). J Arachnol 30:503–510. doi:10.1043/0161-8202(2002)030(0503:ACSOPA)2.0.CO;2

    Article  Google Scholar 

  • Marshall SD, Walker SE, Rypstra AL (2006) Two ecologically-divergent generalist predators have different responses to landscape fragmentation. Oikos 114:241–248

    Article  Google Scholar 

  • McNabb DM, Halaj J, Wise DH (2001) Inferring trophic positions of generalist predators and their linkage to the detrital food web in agroecosystems: a stable isotope analysis. Pedobiologia 45:289–297

    Article  Google Scholar 

  • McNett BJ, Rypstra AL (2000) Habitat selection in a large orb-weaving spider: vegetational complexity determines site selection and distribution. Ecol Entomol 25:423–432

    Article  Google Scholar 

  • Miyashita T, Takada M (2007) Habitat provisioning for aboveground predators decreases detritivores. Ecology 88:2803–2809

    Article  PubMed  Google Scholar 

  • Miyashita T, Takada M, Shimazaki A (2003) Experimental evidence that aboveground predators are sustained by underground detritivores. Oikos 103:31–36

    Article  Google Scholar 

  • Murtaugh PA (2009) Performance of several variable-selection methods applied to real ecological data. Ecol Lett 12:1061–1068. doi:10.1111/j.1461-0248.2009.01361.x

    Article  PubMed  Google Scholar 

  • Nakagawa S, Cuthill IC (2007) Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev 82:591–605

    Article  PubMed  Google Scholar 

  • Nentwig W (1986) Non-web-building spiders: prey specialists or generalists. Oecologia 69:571–576. doi:10.1007/BF00410365

    Article  Google Scholar 

  • Norton AP, English-Loeb G, Belden E (2001) Host plant manipulation of natural enemies: leaf domatia protect beneficial mites from insect predators. Oecologia 126:535–542. doi:10.1007/s004420000556

    Article  Google Scholar 

  • Nyffeler M, Sunderland KD (2003) Composition, abundance and pest control potential of spider communities in agroecoystems: a comparison of European and US studies. Agric Ecosyst Environ 95:579–612

    Article  Google Scholar 

  • Nyffeler M, Sterling WL, Dean DA (1994) How spiders make a living. Environ Entomol 23:1357–1367

    Google Scholar 

  • Obermaier E, Heisswolf A, Poethke HJ, Randlkofer B, Meiners T (2008) Plant architecture and vegetation structure: two ways for insect herbivores to escape parasitism. Eur J Entomol 105:233–240

    Google Scholar 

  • Oelbermann K, Langel R, Scheu S (2008) Utilization of prey from the decomposer system by generalist predators of grassland. Oecologia 155:605–617. doi:10.1007/s00442-007-0927-4

    Article  PubMed  Google Scholar 

  • Price P, Bouton C, Gross P, McPheron B, Thompson J, Weis A (1980) Interactions among 3 trophic levels—influence of plants on interactions between insect herbivores and natural enemies. Annu Rev Ecol Syst 11:41–65

    Article  Google Scholar 

  • Riechert SE, Lockley T (1984) Spiders as biological-control agents. Ann Rev Entomol 29:299–320

    Article  Google Scholar 

  • Roda A, Nyrop J, Dicke M, English-Loeb G (2000) Trichomes and spider-mite webbing protect predatory mite eggs from intraguild predation. Oecologia 125:428–435. doi:10.1007/s004420000462

    Article  Google Scholar 

  • Rypstra AL, Marshall SD (2005) Augmentation of soil detritus affects the spider community and herbivory in a soybean agroecosystem. Entomol Exp Appl 116:149–157

    Article  Google Scholar 

  • Rypstra AL, Samu F (2005) Size dependent intraguild predation and cannibalism in coexisting wolf spiders (Araneae: Lycosidae). J Arachnol 33:390–397

    Article  Google Scholar 

  • Rypstra AL, Carter PE, Balfour RA, Marshall SD (1999) Architectural features of agricultural habitats and their impact on the spider inhabitants. J Arachnol 27:371–377

    Google Scholar 

  • Rypstra AL, Schmidt JM, Reif BD, DeVito J, Persons MH (2007) Tradeoffs involved in site selection and foraging in a wolf spider: effects of substrate structure and predation risk. Oikos 116:853–863. doi:10.1111/j.2007.0030-1299.15622.x

    Article  Google Scholar 

  • Samu F, Sziranyi A, Kiss B (2003) Foraging in agricultural fields: local “sit-and-move” strategy scales up to risk-averse habitat use in a wolf spider. Anim Behav 66:939–947

    Google Scholar 

  • Sanders D, Nickel H, Grutzner T, Platner C (2008) Habitat structure mediates top-down effects of spiders and ants on herbivores. Basic Appl Ecol 9:152–160. doi:10.1016/j.baae.2007.01.003

    Article  Google Scholar 

  • Scheu S (2001) Plants and generalist predators as links between belowground and above-ground system. Basic Appl Ecol 2:1–11. doi:10.1078/1439-1791-00031

    Article  Google Scholar 

  • Schmitz OJ (2008) Predators avoiding predation. Proc Natl Acad Sci USA 105:14749–14750

    Article  CAS  PubMed  Google Scholar 

  • Sih A, Englund G, Wooster D (1998) Emergent impacts of multiple predators on prey. Trends Ecol Evol 13:350–355

    Article  Google Scholar 

  • Soluk R, Collins NC (1988) Synergistic interactions between fish and stoneflies: facilitation and interference among stream predators. Oikos 52:94–100

    Article  Google Scholar 

  • Southwood TRE (1996) Insect–plant relations: overview from the symposium. Entomol Exp Appl 80:320–324

    Article  Google Scholar 

  • Stewart TW, Shumaker TL, Radio TA (2003) Linear and nonlinear effects of habitat structure on composition and abundance in the macroinvertebrate community of a large river. Am Midl Nat 149:293–305. doi:10.1043/0003-0031(2003)149(0293:LANEOH)2.0.CO;2

    Article  Google Scholar 

  • Sutherland K, Samu F (2000) Effects of agricultural diversification on the abundance, distribution, and pest control potential of spiders: a review. Entomol Exp Appl 95:1–13

    Article  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org

  • Tscharntke T, Bommarco R, Clough Y, Crist TO, Kleijn D, Rand TA, Tylianakis JM, van Nouhuys S, Vidal S (2007) Conservation biological control and enemy diversity on a landscape scale. Biol Control 43:294–309. doi:10.1016/j.biocontrol.2007.08.006

    Google Scholar 

  • Ubick D, Paquin P, Cushing PE, Roth V (2005) Spiders of North America: and identification manual. American Arachnological Society, College Park

  • Uetz GW (1991) Habitat structure and spider foraging. In: Bell SS, McCoy ED, Muchinsky HR (eds) Habitat structure: the physical arrangement of objects in space. Chapman and Hall, London, pp 325–348

    Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Google Scholar 

  • Vogel BR (2004) A review of the spider genera Pardosa and Acantholycosa (Araneae: Lycosidae) of the 48 contiguous United States. J Arachnol 32:55–108

    Article  Google Scholar 

  • Warfe DM, Barmuta LA (2004) Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia 141:171–178. doi:10.1007/s00442-004-1644-x

    Article  PubMed  Google Scholar 

  • Whittingham M, Devereux C, Evans A, Bradbury R (2006) Altering perceived predation risk and food availability: management prescriptions to benefit farmland birds on stubble fields. J Appl Ecol 43:640–650. doi:10.1111/j.1365-2664.2006.01186.x

    Article  Google Scholar 

  • Wise DH (2004) Wandering spiders limit densities of a major microbidetritivore in the forest-floor food web. Pedobiologia 48:181–188. doi:10.1016/j.pedobi.2003.12.001

    Article  Google Scholar 

  • Wise DH (2006) Cannibalism, food limitation, intraspecific competition and the regulation of spider populations. Annu Rev Entomol 51:441–465. doi:10.1146/annurev.ento.51.110104.150947

    Article  CAS  PubMed  Google Scholar 

  • Wyman RL (1998) Experimental assessment of salamanders as predators of detrital food webs: effects on invertebrates, decomposition and the carbon cycle. Biodivers Conserv 7:641–650

    Article  Google Scholar 

  • Young OP, Edwards GB (1990) Spiders in United States field crops and their potential effect on crop pests. J Arachnol 18:1–27

    Google Scholar 

Download references

Acknowledgments

We thank M. Yazdani, C. Hoefler, S. Reddy, and E. Shaw for helping to set up the experiments. We thank R. Kolb and the Ecology Research Center for planting and maintaining our fields. A. Cady assisted with spider identification. S. Bacher, A. J. Bailer, A. B. Cady, T. O. Crist, E. C. Evans, C. D. Hoefler, E. L. Monroe, J. Reim, M. I. Sitvarin, M. J. Vanni, S. M. Wilder, K. M. Wrinn, and two anonymous reviewers are thanked for comments that greatly improved the manuscript. This research was supported by the National Science Foundation (DBI 0216776 and DBI 0116947) and the Department of Zoology and Hamilton Campus of Miami University. Our research conforms with the legal requirements of the United States of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason M. Schmidt.

Additional information

Communicated by Sven Bacher.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 2876 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, J.M., Rypstra, A.L. Opportunistic predator prefers habitat complexity that exposes prey while reducing cannibalism and intraguild encounters. Oecologia 164, 899–910 (2010). https://doi.org/10.1007/s00442-010-1785-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-010-1785-z

Keywords

Navigation