Skip to main content

Advertisement

Log in

Elevated carbon dioxide alters impacts of precipitation pulses on ecosystem photosynthesis and respiration in a semi-arid grassland

  • Global change ecology - Original paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Predicting net C balance under future global change scenarios requires a comprehensive understanding of how ecosystem photosynthesis (gross primary production; GPP) and respiration (Re) respond to elevated atmospheric [CO2] and altered water availability. We measured net ecosystem exchange of CO2 (NEE), GPP and Re under ambient and elevated [CO2] in a northern mixed-grass prairie (Wyoming, USA) during dry intervals and in response to simulated precipitation pulse events. Elevated [CO2] resulted in higher rates of both GPP and Re across the 2006 growing season, and the balance of these two fluxes (NEE) accounted for cumulative growing season C uptake (−14.4 ± 8.3 g C m−2). Despite lower GPP and Re, experimental plots under ambient [CO2] had greater cumulative uptake (−36.2 ± 8.2 g C m−2) than plots under elevated [CO2]. Non-irrigated control plots received 50% of average precipitation during the drought of 2006, and had near-zero NEE (1.9 ± 6.4 g C m−2) for the growing season. Elevated [CO2] extended the magnitude and duration of pulse-related increases in GPP, resulting in a significant [CO2] treatment by pulse day interaction, demonstrating the potential for elevated [CO2] to increase the capacity of this ecosystem to respond to late-season precipitation. However, stimulation of Re throughout the growing season under elevated [CO2] reduced net C uptake compared to plots under ambient [CO2]. These results indicate that although elevated [CO2] stimulates gross rates of ecosystem C fluxes, it does not necessarily enhance net C uptake, and that C cycle responses in semi-arid grasslands are likely to be more sensitive to changes in precipitation than atmospheric [CO2].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ainsworth EA, Rogers A, Blum H, Nosberger J, Long SP (2004) Testing the “source-sink” hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine max. Agric For Meteorol 122:85–94

    Article  Google Scholar 

  • Arnone JA III, Zaller JG, Spehn EM, Niklaus PA, Wells CE, Körner C (2000) Dynamics of root systems in native grasslands: effects of elevated atmospheric CO2. New Phytol 147:73–85

    Article  CAS  Google Scholar 

  • Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present, and future. Glob Chang Biol 9:479–492

    Article  Google Scholar 

  • Birch HF (1958) The effect of soil drying on humus decomposition and nitrogen availability. Plant Soil 10:9–31

    Article  CAS  Google Scholar 

  • Borken W, Savage K, Davidson EA, Trumbore SE (2006) Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil. Glob Chang Biol 12:177–193

    Article  Google Scholar 

  • Burke IC, Lauenroth WK, Vinton MA, Hook PB, Kelly RH, Epstein HE, Aguilar MR, Robles MD, Aguilera MO, Murphy KL, Gill RA (1998) Plant-soil interactions in temperate grasslands. Biogeochemistry 42:121–143

    Article  Google Scholar 

  • Carney KM, Hungate BA, Drake BG, Megonigal JP (2007) Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Proc Natl Acad Sci USA 104:4990–4995

    Article  CAS  PubMed  Google Scholar 

  • Chimner RA, Welker JM (2005) Ecosystem respiration responses to experimental manipulations of winter and summer precipitation in a mixed grass prairie, WY, USA. Biogeochemistry 73:257–270

    Article  Google Scholar 

  • Chou WW, Silver WL, Jackson RD, Thompson AW, Allen-Diaz B (2008) The sensitivity of annual grassland carbon cycling to the quantity and timing of rainfall. Glob Chang Biol 14:1382–1394

    Article  Google Scholar 

  • Conant RT, Dalla-Betta J, Klopatek CC, Klopatek JM (2004) Controls on soil respiration in semiarid soils. Soil Biol Biochem 36:945–951

    Article  CAS  Google Scholar 

  • Davidson EA, Belk E, Boone RD (1998) Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Glob Chang Biol 4:217–227

    Article  Google Scholar 

  • DeLucia EH, Drake JE, Thomas RB, Gonzales-Melers M (2007) Forest carbon use efficiency: is respiration a constant fraction of gross primary production? Glob Chang Biol 13:1157–1167

    Article  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074

    Article  CAS  PubMed  Google Scholar 

  • Fay PA, Carlisle JD, Knapp AK, Blair JM, Collins SL (2003) Productivity responses to altered rainfall patterns in a C4-dominated grassland. Oecologia 137:245–251

    Article  PubMed  Google Scholar 

  • Fierer N, Schimel JP (2002) Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biol Biochem 34:777–787

    Article  CAS  Google Scholar 

  • Fierer N, Schimel JP (2003) A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Sci Soc Am J 67:798–805

    Article  CAS  Google Scholar 

  • Flanagan LB, Wever LA, Carlson PJ (2002) Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. Glob Chang Biol 8:599–615

    Article  Google Scholar 

  • Geider RJ, Delucia EH, Falkowski PG et al (2001) Primary productivity of planet earth: biological determinants and physical constraints in terrestrial and aquatic habitats. Glob Chang Biol 7:849–882

    Article  Google Scholar 

  • Gifford RM (1995) Whole plant respiration and photosynthesis of wheat under elevated CO2 concentration and temperature: long-term vs. short-term distinctions for modeling. Glob Change Biology 1:385–396

    Article  Google Scholar 

  • Gilmanov TG et al (2007) Partitioning European grassland net ecosystem CO2 exchange into gross primary productivity and ecosystem respiration using light response function analysis. Agric Ecosyst Environ 121:93–120

    Article  CAS  Google Scholar 

  • Groisman PY, Karl TR, Easterling DR, Knight RW, Jamason PB, Hennessy KJ, Suppiah R, Page CM, Wibig J, Fortuniak K, Razuvaev VN, Douglas A, Førland E, Zhai PM (1999) Changes in the probability of heavy precipitation: important indicators of climatic change. Clim Change 42:243–283

    Article  Google Scholar 

  • Heisler-White JL, Knapp AK, Kelly EF (2008) Increasing precipitation event size increases aboveground net primary production in a semi-arid grassland. Oecologia 158:129–140

    Article  PubMed  Google Scholar 

  • Huxman TE, Cable JM, Ignace DD, Eilts J, English NB, Weltzin J, Williams DG (2004a) Response of net ecosystem gas exchange to a simulated precipitation pulse in a semi-arid grassland: the role of native versus non-native grasses and soil texture. Oecologia 141:295–305

    PubMed  Google Scholar 

  • Huxman TE, Snyder KA, Tissue D, Leffler JA, Ogle K, Pockman WT, Sandquist DR, Potts DL, Schwinning S (2004b) Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 141:254–268

    PubMed  Google Scholar 

  • International Panel on Climate Change (2007) Climate Change 2007: the physical science basis, summary for policy makers. IPCC WGI fourth assessment report

  • Jarvis PG, Rey A, Petsikos C, Wingate L, Rayment M, Pereira JS, Banza J, David JS, Miglietta F, Borgetti M, Manca G, Valentini R (2007) Dying and wetting of Mediteranean soils stimulates decomposition and carbon dioxide emission: the “Birch effect”. Tree Physiol 27:929–940

    CAS  PubMed  Google Scholar 

  • Jasoni RL, Smith SD, Arnone JA (2005) Net ecosystem exchange in Mojave Desert shrublands during the eighth year of exposure to elevated CO2. Glob Chang Biol 11:749–756

    Article  Google Scholar 

  • Jin VL, Evans RD (2007) Elevated CO2 increases microbial carbon substrate use and nitrogen cycling in Mojave Desert soils. Glob Chang Biol 13:452–465

    Article  Google Scholar 

  • Knapp AK, Fay PA, Blair JM, Blair JM, Collins SL, Smith MD, Carlisle JD, Harper CW, Danner BT, Lett MS, McCarron JK (2002) Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science 298:2202–2205

    Article  CAS  PubMed  Google Scholar 

  • Lauenroth WK, Sala OE (1992) Long-term forage production of North-American shortgrass steppe. Ecol Appl 2:397–403

    Article  Google Scholar 

  • LeCain DR, Morgan JA, Schuman GE, Reeder JD, Hart RH (2002) Carbon exchange and species composition of grazed pastures and exclosures in the shortgrass steppe of Colorado. Agric Ecosyst Environ 93:421–435

    Article  Google Scholar 

  • LeCain DR, Morgan JA, Mosier AR, Nelson JA (2003) Soil and plant water relations determine photosynthetic responses of C3 and C4 grasses in a semiarid ecosystem under elevated CO2. Ann Bot 91:41–52

    Article  CAS  Google Scholar 

  • LI-COR (2001) LI-7500 CO2/H2O analyzer, instruction manual, section 2–11. LI-COR, Lincoln

    Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628

    Article  CAS  PubMed  Google Scholar 

  • Mellilo JM, McGuire AD, Kicklighter DW, Moore BI, Vorosmarty CJ, Schloss AL (1993) Climate change and terrestrial net primary production. Nature 363:234–240

    Article  Google Scholar 

  • Miglietta F, Hoosbeek MR, Foot J, Gigon F, Hassinen A, Heijmans M, Peressotti A, Saarinen T, van Breemen N, Wallén B (2001) Spatial and temporal performance of the MiniFACE (free air CO2 enrichment) system on bog ecosystems in northern and central Europe. Environ Monit Assess 66:107–127

    Article  CAS  PubMed  Google Scholar 

  • Milchunas DG, Mosier AR, Morgan JA, LeCain DR, King JY, Nelson JA (2005) Root production and tissue quality in a shortgrass steppe exposed to elevated CO2: using a new ingrowth method. Plant Soil 268:111–122

    Article  CAS  Google Scholar 

  • Morgan JA, LeCain DR, Mosier AR, Milchunas DG (2001) Elevated CO2 changes water relations and productivity and affects gas exchange in C3 and C4 grasses of the Colorado shortgrass steppe. Glob Chang Biol 7:451–466

    Article  Google Scholar 

  • Morgan JA, Pataki DE, Körner C, Clark H, Del Grosso SJ, Grünzweig JM, Knapp AK, Mosier AR, Newton PCD, Niklaus PA, Nippert JP, Nowak RS, Parton WJ, Polley HW, Shaw MR (2004) Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia 140:11–25

    Article  CAS  PubMed  Google Scholar 

  • Nelson JA, Morgan JA, LeCain DR, Mosier AR, Milchunas DG, Parton BA (2004) Elevated CO2 increases soil moisture and enhances plant water relations in a long-term field study in semiarid shortgrass steppe of Colorado. Plant Soil 259:169–179

    Article  CAS  Google Scholar 

  • Niklaus PA, Spinnler D, Körner C (1998) Soil moisture dynamics of calcareous grassland under elevated CO2. Oecologia 117:201–208

    Article  Google Scholar 

  • Norton U, Mosier AR, Derner JD, Morgan JA, Ingram LJ, Stahl PD (2008) Moisture pulses, trace gas emissions and soil C and N in cheatgrass and native grass-dominated sagebrush steppe. Soil Biol Biochem 40:1421–1431

    Article  CAS  Google Scholar 

  • Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:51–58

    Article  Google Scholar 

  • Ogle K, Reynolds JF (2004) Plant responses to precipitation in desert ecosystems: integrating functional types, pulses, thresholds, and delays. Oecologia 141:282–294

    Article  PubMed  Google Scholar 

  • Owensby CE, Coyne PI, Ham JM, Auen LM, Knapp AK (1993) Biomass production in a tallgrass prairie ecosystem exposed to ambient and elevated CO2. Ecol Appl 3:644–653

    Article  Google Scholar 

  • Owensby CE, Ham JM, Knapp AK, Bremer D, Auen LM (1997) Water vapour fluxes and their impact under elevated CO2 in a C4-tallgrass prairie. Glob Chang Biol 3:189–195

    Article  Google Scholar 

  • Patrick L, Cable JM, Potts D, Ignace D, Barron-Gafford G, Griffith A, Alpert H, Van Gesterl N, Robertson T, Huxman TE, Zak J, Loik ME, Tissue D (2007) Effects of an increase in summer precipitation on leaf, soil, and ecosystem fluxes of CO2 and H2O in a sotol grassland in Big Bend National Park, Texas. Oecologia 151:704–718

    Article  PubMed  Google Scholar 

  • Pendall E, Del Grosso S, King JY, LeCain DR, Milchunas DG, Morgan JA, Mosier AR, Ojima DS, Parton WA, Tans PP, White JWC (2003) Elevated atmospheric CO2 effects and soil water feedbacks on soil respiration components in a Colorado grassland. Glob Biogeochem Cycl 17(2):15-1 to 15-13. doi:10.1029/2001GB001821

    Google Scholar 

  • Pendall E, Mosier AR, Morgan JA (2004) Rhizodeposition stimulated by elevated CO2 in a semiarid grassland. New Phytol 162:447–458

    Article  Google Scholar 

  • Potts DL, Huxman TE, Cable JM, English NB, Ignace DD, Eilts JA, Mason MJ, Weltzin JF, Williams DG (2006) Antecedent moisture and seasonal precipitation influence the response of canopy-scale carbon and water exchange to rainfall pulses in a semiarid grassland. New Phytol 170:849–860

    Article  CAS  PubMed  Google Scholar 

  • Running SW, Baldocchi DD, Turner D et al (1999) A global terrestrial monitoring network, scaling tower fluxes with ecosystem modeling and EOS satellite data. Remote Sens Environ 70:108–127

    Article  Google Scholar 

  • Rustad LE, Campbell J, Marion GM et al (2001) A meta-analysis of the responses of soil respiration, net N mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562

    Article  Google Scholar 

  • Sala OE, Lauenroth WK (1982) Small rainfall events: an ecological role in semiarid regions. Oecologia 53:301–304

    Article  Google Scholar 

  • Schwinning S, Sala OE (2004) Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141:211–220

    PubMed  Google Scholar 

  • Schwinning S, Davis K, Richardson L, Ehleringer JR (2002) Deuterium enriched irrigation indicates different forms of rain use in shrub/grass species of the Colorado Plateau. Oecologia 130:345–355

    Article  Google Scholar 

  • Sims PL, Singh JS (1978) The structure and function of ten western North American grasslands. III. Net primary production, turnover and efficiencies of energy capture and water use. Ecology 66:573–597

    Article  Google Scholar 

  • Singh JS, Milchunas DG, Lauenroth WK (1998) Soil water dynamics and vegetation patterns in a semi-arid grassland. Plant Ecol 134:77–89

    Article  Google Scholar 

  • Svejcar T et al (2008) Carbon fluxes on North American rangelands. Rangel Ecol Manage 61:465–474

    Article  Google Scholar 

  • Verburg PSJ, Larsen J, Johnson DW, Schorran DE, Arnone JA (2005) Impacts of an anomalously warm year on soil CO2 efflux in experimentally manipulated tallgrass prairie ecosystems. Glob Chang Biol 11:1720–1732

    Article  Google Scholar 

  • Volk M, Niklaus PA, Körner C (2000) Soil moisture effects determine CO2 response of grassland species. Oecologia 125:380–388

    Article  Google Scholar 

  • Waring RH, Landseberg JJ, Williams M (1998) Net primary production of forests: a constant fraction of gross primary production? Tree Physiol 18:129–134

    PubMed  Google Scholar 

  • Weltzin JF, Tissue DT (2003) Resource pulses in arid environments—patterns of rain, patterns of life. New Phytol 157:171–173

    Article  Google Scholar 

  • Weltzin JF, Loik ME, Schwinning S, Williams DG, Fay PA, Haddad BM, Harte J, Huxman TE, Knapp AK, Lin G, Pockman WT, Shaw R, Small EE, Smith MD, Smith SD, Tissue DT, Zak JC (2003) Assessing the response of terrestrial ecosystems to potential changes in precipitation. Bioscience 53:941–952

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the US Department of Energy’s Office of Science (BER) through the Western Regional Center of the National Institute for Climatic Change Research at Northern Arizona University, and the US Department of Agriculture’s Cooperative State Research, Education and Extension Service (grant number 2008-35107-18655), with base support from USDA—Agricultural Research Service. We thank Jo Preston, Meghan Taylor, Dan LeCain, Jennifer Schomp, Peter Koenig, and David Smith for field and lab assistance, David Legg for help with statistical analyses, and Jessica Cable and Lachlan Ingram for useful comments. This experiment complied with the current laws of the USA and state of Wyoming.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elise Pendall.

Additional information

Communicated by Louis Pitelka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bachman, S., Heisler-White, J.L., Pendall, E. et al. Elevated carbon dioxide alters impacts of precipitation pulses on ecosystem photosynthesis and respiration in a semi-arid grassland. Oecologia 162, 791–802 (2010). https://doi.org/10.1007/s00442-009-1511-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-009-1511-x

Keywords

Navigation