Skip to main content
Log in

The C. elegans intestine: organogenesis, digestion, and physiology

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The comparatively simple Caenorhabditis elegans intestine fulfills many of the complex functions of the mammalian digestive tract, liver, and fat tissues, while also having roles in pathogen defense, immunity, and longevity. In this review, we describe the structure of the C. elegans gut and how it develops from the embryonic precursor E. We examine what is currently known about how the animal’s microbial diet is moved through the intestinal lumen, and how its enzymatic functions contribute to physiology and metabolism. The underlying gene regulatory networks behind both development and physiology are also described. Finally, we consider recent studies that examine metabolism and digestion and describe emerging areas for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahringer J 2006. Reverse genetics (April 6, 2006). In: T.C.e.R. Community (ed.) WormBook

  • Allman E, Johnson D, Nehrke K (2009) Loss of the apical V-ATPase a-subunit VHA-6 prevents acidification of the intestinal lumen during a rhythmic behavior in C. elegans. Am J Phys Cell Phys 297:C1071–C1081

    Article  CAS  Google Scholar 

  • Altun ZF, Hall DH 2009. Alimentary system, intestine. WormAtlas

  • Amrit FR, Steenkiste EM, Ratnappan R, Chen SW, McClendon TB, Kostka D, Yanowitz J, Olsen CP, Ghazi A (2016) DAF-16 and TCER-1 facilitate adaptation to germline loss by restoring lipid homeostasis and repressing reproductive physiology in C. elegans. PLoS Genet 12:e1005788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An JH, Blackwell TK (2003) SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev 17:1882–1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Androwski RJ, Flatt KM, Schroeder NE, 2017. Phenotypic plasticity and remodeling in the stress-induced Caenorhabditis elegans dauer Wiley Interdiscip Rev Dev Biol 6

  • Arda HE, Taubert S, MacNeil LT, Conine CC, Tsuda B, Van Gilst M, Sequerra R, Doucette-Stamm L, Yamamoto KR, Walhout AJ (2010) Functional modularity of nuclear hormone receptors in a Caenorhabditis elegans metabolic gene regulatory network. Mol Syst Biol 6:367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Artyukhin AB, Zhang YK, Akagi AE, Panda O, Sternberg PW, Schroeder FC (2018) Metabolomic “dark matter” dependent on peroxisomal beta-oxidation in Caenorhabditis elegans. J Am Chem Soc 140:2841–2852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asan A, Raiders SA, Priess JR (2016) Morphogenesis of the C elegans intestine involves axon guidance genes. PLoS Genet 12:e1005950

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashe A, Belicard T, Le Pen J, Sarkies P, Frezal L, Lehrbach NJ, Felix MA, Miska EA (2013) A deletion polymorphism in the Caenorhabditis elegans RIG-I homolog disables viral RNA dicing and antiviral immunity. Elife 2:e00994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beller M, Bulankina AV, Hsiao HH, Urlaub H, Jackle H, Kuhnlein RP (2010) PERILIPIN-dependent control of lipid droplet structure and fat storage in Drosophila. Cell Metab 12:521–532

    Article  CAS  PubMed  Google Scholar 

  • Bender A, Woydziak ZR, Fu L, Branden M, Zhou Z, Ackley BD, Peterson BR (2013) Novel acid-activated fluorophores reveal a dynamic wave of protons in the intestine of Caenorhabditis elegans. ACS Chem Biol 8:636–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Block DH, Twumasi-Boateng K, Kang HS, Carlisle JA, Hanganu A, Lai TY, Shapira M (2015) The developmental intestinal regulator ELT-2 controls p38-dependent immune responses in Adult C. elegans. PLoS Genet 11:e1005265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braeckman BP, Houthoofd K, Vanfleteren JR, 2009. Intermediary metabolism. WormBook, 1–24

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    CAS  PubMed  PubMed Central  Google Scholar 

  • Broitman-Maduro G, Maduro MF, Rothman JH (2005) The noncanonical binding site of the MED-1 GATA factor defines differentially regulated target genes in the C. elegans mesendoderm. Dev Cell 8:427–433

    Article  CAS  PubMed  Google Scholar 

  • Bruce RG (1966) The fine structure of the intestine and hind gut of the larva of Trichinella spiralis. Parasitology 56:359–365

    Article  CAS  PubMed  Google Scholar 

  • Buchon N, Osman D (2015) All for one and one for all: regionalization of the Drosophila intestine. Insect Biochem Mol Biol 67:2–8

    Article  CAS  PubMed  Google Scholar 

  • Byers JR, Anderson RV (1973) Morphology and ultrastructure of the intestine in a plant-parasitic nematode, Tylenchorhynchus dubius. J Nematol 5:28–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell EM, Fares H (2010) Roles of CUP-5, the Caenorhabditis elegans orthologue of human TRPML1, in lysosome and gut granule biogenesis. BMC Cell Biol 11:40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Celen I, Doh JH, Sabanayagam CR (2018) Effects of liquid cultivation on gene expression and phenotype of C elegans. BMC Genomics 19:562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty K, Leung K, Krishnan Y (2017) High lumenal chloride in the lysosome is critical for lysosome function. Elife 6:e28862

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen CC, Schweinsberg PJ, Vashist S, Mareiniss DP, Lambie EJ, Grant BD (2006) RAB-10 is required for endocytic recycling in the Caenorhabditis elegans intestine. Mol Biol Cell 17:1286–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Li PW, Goldstein BA, Cai W, Thomas EL, Chen F, Hubbard AE, Melov S, Kapahi P (2013) Germline signaling mediates the synergistically prolonged longevity produced by double mutations in daf-2 and rsks-1 in C. elegans. Cell Rep 5:1600–1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi H, Broitman-Maduro G, Maduro MF (2017) Partially compromised specification causes stochastic effects on gut development in C. elegans. Dev Biol 427:49–60

    Article  CAS  PubMed  Google Scholar 

  • Chughtai AA, Kassak F, Kostrouchova M, Novotny JP, Krause MW, Saudek V, Kostrouch Z (2015) Perilipin-related protein regulates lipid metabolism in C elegans. PeerJ 3:e1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clucas C, Cabello J, Bussing I, Schnabel R, Johnstone IL (2002) Oncogenic potential of a C. elegans cdc25 gene is demonstrated by a gain-of-function allele. EMBO J 21:665–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coburn C, Allman E, Mahanti P, Benedetto A, Cabreiro F, Pincus Z, Matthijssens F, Araiz C, Mandel A, Vlachos M, Edwards SA, Fischer G, Davidson A, Pryor RE, Stevens A, Slack FJ, Tavernarakis N, Braeckman BP, Schroeder FC, Nehrke K, Gems D (2013) Anthranilate fluorescence marks a calcium-propagated necrotic wave that promotes organismal death in C elegans. PLoS Biol 11:e1001613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coburn C, Gems D (2013) The mysterious case of the C. elegans gut granule: death fluorescence, anthranilic acid and the kynurenine pathway. Front Genet 4:151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colley FC (1970) Strongyloides myopotomi: fine structure of the body wall and alimentary tract of the adult and third-stage larva. Exp Parasitol 28:420–434

    Article  CAS  PubMed  Google Scholar 

  • Copic A, Antoine-Bally S, Gimenez-Andres M, La Torre Garay C, Antonny B, Manni MM, Pagnotta S, Guihot J, Jackson CL (2018) A giant amphipathic helix from a perilipin that is adapted for coating lipid droplets. Nat Commun 9:1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coroian C, Broitman-Maduro G, Maduro MF (2005) Med-type GATA factors and the evolution of mesendoderm specification in nematodes. Dev Biol 289:444–455

    Article  CAS  PubMed  Google Scholar 

  • Couthier A, Smith J, McGarr P, Craig B, Gilleard JS (2004) Ectopic expression of a Haemonchus contortus GATA transcription factor in Caenorhabditis elegans reveals conserved function in spite of extensive sequence divergence. Mol Biochem Parasitol 133:241–253

    Article  CAS  PubMed  Google Scholar 

  • Cypser JR, Kitzenberg D, Park SK (2013) Dietary restriction in C. elegans: recent advances. Exp Gerontol 48:1014–1017

    Article  CAS  PubMed  Google Scholar 

  • Dirksen P, Marsh SA, Braker I, Heitland N, Wagner S, Nakad R, Mader S, Petersen C, Kowallik V, Rosenstiel P, Felix MA, Schulenburg H (2016) The native microbiome of the nematode Caenorhabditis elegans: gateway to a new host-microbiome model. BMC Biol 14:38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezcurra M, Benedetto A, Sornda T, Gilliat AF, Au C, Zhang Q, van Schelt S, Petrache AL, Wang H, Guardia Y, Bar-Nun S, Tyler E, Wakelam MJ, Gems D (2018) C elegans eats its own intestine to make yolk leading to multiple senescent pathologies. Curr Biol 28:3352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fouad AD, Pu SH, Teng S, Mark JR, Fu M, Zhang K, Huang J, Raizen DM, Fang-Yen C (2017) Quantitative assessment of fat levels in Caenorhabditis elegans using dark field microscopy. G3 (Bethesda) 7:1811–1818

    Article  CAS  Google Scholar 

  • Fukushige T, Hawkins MG, McGhee JD (1998) The GATA-factor elt-2 is essential for formation of the Caenorhabditis elegans intestine. Dev Biol 198:286–302

    CAS  PubMed  Google Scholar 

  • Gammon DB, Ishidate T, Li L, Gu W, Silverman N, Mello CC (2017) The antiviral RNA interference response provides resistance to lethal arbovirus infection and vertical transmission in Caenorhabditis elegans. Curr Biol 27:795–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gebauer J, Gentsch C, Mansfeld J, Schmeisser K, Waschina S, Brandes S, Klimmasch L, Zamboni N, Zarse K, Schuster S, Ristow M, Schauble S, Kaleta C (2016) A genome-scale database and reconstruction of Caenorhabditis elegans metabolism. Cell Syst 2:312–322

    Article  CAS  PubMed  Google Scholar 

  • Gehart H, Clevers H (2018) Tales from the crypt: new insights into intestinal stem cells. Nat Rev Gastroenterol Hepatol 16:19–34

    Article  Google Scholar 

  • Gelino S, Chang JT, Kumsta C, She X, Davis A, Nguyen C, Panowski S, Hansen M (2016) Intestinal autophagy improves healthspan and longevity in C elegans during dietary restriction. PLoS Genet 12:e1006135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerbaba TK, Green-Harrison L, Buret AG (2017) Modeling host-microbiome interactions in Caenorhabditis elegans. J Nematol 49:348–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghafouri S, McGhee JD (2007) Bacterial residence time in the intestine of Caenorhabditis elegans. Nematology 9:87–91

    Article  Google Scholar 

  • Gillis WJ, Bowerman B, Schneider SQ (2007) Ectoderm- and endomesoderm-specific GATA transcription factors in the marine annelid Platynereis dumerilli. Evol Dev 9:39–50

    Article  CAS  PubMed  Google Scholar 

  • Gobel V, Barrett PL, Hall DH, Fleming JT (2004) Lumen morphogenesis in C. elegans requires the membrane-cytoskeleton linker erm-1. Dev Cell 6:865–873

    Article  PubMed  Google Scholar 

  • Goh GY, Martelli KL, Parhar KS, Kwong AW, Wong MA, Mah A, Hou NS, Taubert S (2014) The conserved mediator subunit MDT-15 is required for oxidative stress responses in Caenorhabditis elegans. Aging Cell 13:70–79

    Article  CAS  PubMed  Google Scholar 

  • Goh GYS, Winter JJ, Bhanshali F, Doering KRS, Lai R, Lee K, Veal EA, Taubert S (2018) NHR-49/HNF4 integrates regulation of fatty acid metabolism with a protective transcriptional response to oxidative stress and fasting. Aging Cell 17:e12743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein B (1992) Induction of gut in Caenorhabditis elegans embryos. Nature 357:255–257

    Article  CAS  PubMed  Google Scholar 

  • Goldstein B (1993) Establishment of gut fate in the E lineage of C. elegans: the roles of lineage-dependent mechanisms and cell interactions. Development 118:1267–1277

    CAS  PubMed  Google Scholar 

  • Grant B, Hirsh D (1999) Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Mol Biol Cell 10:4311–4326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gravato-Nobre MJ, Vaz F, Filipe S, Chalmers R, Hodgkin J (2016) The invertebrate lysozyme effector ILYS-3 is systemically activated in response to danger signals and confers antimicrobial protection in C. elegans. PLoS Pathog 12:e1005826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haag ES, Fitch DHA, Delattre M (2018) From “the worm” to “the worms” and back again: the evolutionary developmental biology of nematodes. Genetics 210:397–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashani M, Witzel HR, Pawella LM, Lehmann-Koch J, Schumacher J, Mechtersheimer G, Schnolzer M, Schirmacher P, Roth W, Straub BK (2018) Widespread expression of perilipin 5 in normal human tissues and in diseases is restricted to distinct lipid droplet subpopulations. Cell Tissue Res 374:121–136

    Article  CAS  PubMed  Google Scholar 

  • Hermann GJ, Scavarda E, Weis AM, Saxton DS, Thomas LL, Salesky R, Somhegyi H, Curtin TP, Barrett A, Foster OK, Vine A, Erlich K, Kwan E, Rabbitts BM, Warren K (2012) C. elegans BLOC-1 functions in trafficking to lysosome-related gut granules. PLoS One 7:e43043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermann GJ, Schroeder LK, Hieb CA, Kershner AM, Rabbitts BM, Fonarev P, Grant BD, Priess JR (2005) Genetic analysis of lysosomal trafficking in Caenorhabditis elegans. Mol Biol Cell 16:3273–3288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hevelone J, Hartman PS (1988) An endonuclease from Caenorhabditis elegans: partial purification and characterization. Biochem Genet 26:447–461

    Article  CAS  PubMed  Google Scholar 

  • Hieb WF, Rothstein M (1968) Sterol requirement for reproduction of a free-living nematode. Science 160:778–780

    Article  CAS  PubMed  Google Scholar 

  • Hochbaum D, Zhang Y, Stuckenholz C, Labhart P, Alexiadis V, Martin R, Knolker HJ, Fisher AL (2011) DAF-12 regulates a connected network of genes to ensure robust developmental decisions. PLoS Genet 7:e1002179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsin H, Kenyon C (1999) Signals from the reproductive system regulate the lifespan of C. elegans. Nature 399:362–366

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, D’Amora DR, MacNeil LT, Walhout AJM, Kubiseski TJ (2018) The Caenorhabditis elegans oxidative stress response requires the NHR-49 transcription factor. G3 (Bethesda) 8:3857–3863

    Article  CAS  Google Scholar 

  • Hung WL, Wang Y, Chitturi J, Zhen M (2014) A Caenorhabditis elegans developmental decision requires insulin signaling-mediated neuron-intestine communication. Development 141:1767–1779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutter H (2012) Fluorescent protein methods: strategies and applications. Methods Cell Biol 107:67–92

    Article  CAS  PubMed  Google Scholar 

  • Jia K, Levine B (2007) Autophagy is required for dietary restriction-mediated life span extension in C. elegans. Autophagy 3:597–599

    Article  PubMed  Google Scholar 

  • Jiang H, Wang D (2018) The microbial zoo in the C. elegans intestine: bacteria, fungi and viruses. Viruses 10:E85

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen EM, Mango SE (2002) The art and design of genetic screens: caenorhabditis elegans. Nat Rev Genet 3:356–369

    Article  CAS  PubMed  Google Scholar 

  • Kadayifci FZ, Zheng S, Pan YX (2018) Molecular mechanisms underlying the link between diet and DNA methylation. Int J Mol Sci 19:4055

    Article  PubMed Central  Google Scholar 

  • Kamath RS, Martinez-Campos M, Zipperlen P, Fraser AG, Ahringer J (2001) Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol 2:RESEARCH0002

    Article  CAS  PubMed  Google Scholar 

  • Kandasamy S, Khan W, Evans F, Critchley AT, Prithiviraj B (2012) Tasco(R): a product of Ascophyllum nodosum enhances immune response of Caenorhabditis elegans against Pseudomonas aeruginosa infection. Mar Drugs 10:84–105

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanzaki N, Tsai IJ, Tanaka R, Hunt VL, Liu D, Tsuyama K, Maeda Y, Namai S, Kumagai R, Tracey A, Holroyd N, Doyle SR, Woodruff GC, Murase K, Kitazume H, Chai C, Akagi A, Panda O, Ke HM, Schroeder FC, Wang J, Berriman M, Sternberg PW, Sugimoto A, Kikuchi T (2018) Biology and genome of a newly discovered sibling species of Caenorhabditis elegans. Nat Commun 9:3216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan REW, Maxwell CS, Codd NK, Baugh LR (2018) Pervasive positive and negative feedback regulation of insulin-like signaling in Caenorhabditis elegans. Genetics

  • Karasov WH, Douglas AE (2013) Comparative digestive physiology. Compr Physiol 3:741–783

    PubMed  PubMed Central  Google Scholar 

  • Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464

    Article  CAS  PubMed  Google Scholar 

  • Khan F, Jain S, Oloketuyi SF (2018) Bacteria and bacterial products: foe and friends to Caenorhabditis elegans. Microbiol Res 215:102–113

    Article  CAS  PubMed  Google Scholar 

  • Kimble J, Sharrock WJ (1983) Tissue-specific synthesis of yolk proteins in Caenorhabditis elegans. Dev Biol 96:189–196

    Article  CAS  PubMed  Google Scholar 

  • Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) Daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277:942–946

    Article  CAS  PubMed  Google Scholar 

  • Kiontke K, Sudhaus W 2006. Ecology of Caenorhabditis species. WormBook, 1–14

  • Kiontke KC, Felix MA, Ailion M, Rockman MV, Braendle C, Penigault JB, Fitch DH (2011) A phylogeny and molecular barcodes for Caenorhabditis, with numerous new species from rotting fruits. BMC Evol Biol 11:339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kormish JD, Gaudet J, McGhee JD (2010) Development of the C. elegans digestive tract. Curr Opin Genet Dev 20:346–354

    Article  CAS  PubMed  Google Scholar 

  • Kostic I, Roy R (2002) Organ-specific cell division abnormalities caused by mutation in a general cell cycle regulator in C. elegans. Development 129:2155–2165

    CAS  PubMed  Google Scholar 

  • Kramer JM 2005. Basement membranes. WormBook, 1–15

  • Lapierre LR, Gelino S, Melendez A, Hansen M (2011) Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans. Curr Biol 21:1507–1514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapierre LR, Silvestrini MJ, Nunez L, Ames K, Wong S, Le TT, Hansen M, Melendez A (2013) Autophagy genes are required for normal lipid levels in C. elegans. Autophagy 9:278–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurent V, Brooks DR, Coates D, Isaac RE (2001) Functional expression and characterization of the cytoplasmic aminopeptidase P of Caenorhabditis elegans. Eur J Biochem 268:5430–5438

    Article  CAS  PubMed  Google Scholar 

  • Lee D, Anya A (1968) Studies on the movement, the cytology and the associated micro-organisms of the intestine of Aspiculuris tetraptera (Nematoda). J Zool 156:9–14

    Article  Google Scholar 

  • Lee YU, Son M, Kim J, Shim YH, Kawasaki I (2016) CDC-25.2, a C. elegans ortholog of cdc25, is essential for the progression of intestinal divisions. Cell Cycle 15:654–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemieux GA, Ashrafi K (2015) Insights and challenges in using C. elegans for investigation of fat metabolism. Crit Rev Biochem Mol Biol 50:69–84

    Article  CAS  PubMed  Google Scholar 

  • Lenaerts I, Walker GA, Van Hoorebeke L, Gems D, Vanfleteren JR (2008) Dietary restriction of Caenorhabditis elegans by axenic culture reflects nutritional requirement for constituents provided by metabolically active microbes. J Gerontol A Biol Sci Med Sci 63:242–252

    Article  PubMed  Google Scholar 

  • Lentjes MH, Niessen HE, Akiyama Y, de Bruine AP, Melotte V, van Engeland M (2016) The emerging role of GATA transcription factors in development and disease. Expert Rev Mol Med 18:e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung B, Hermann GJ, Priess JR (1999) Organogenesis of the Caenorhabditis elegans intestine. Dev Biol 216:114–134

    Article  CAS  PubMed  Google Scholar 

  • Lin K, Hsin H, Libina N, Kenyon C (2001) Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet 28:139–145

    Article  CAS  PubMed  Google Scholar 

  • Lin KT, Broitman-Maduro G, Hung WW, Cervantes S, Maduro MF (2009) Knockdown of SKN-1 and the Wnt effector TCF/POP-1 reveals differences in endomesoderm specification in C. briggsae as compared with C. elegans. Dev Biol 325:296–306

    Article  CAS  PubMed  Google Scholar 

  • Lin R, Thompson S, Priess JR (1995) Pop-1 encodes an HMG box protein required for the specification of a mesoderm precursor in early C. elegans embryos. Cell 83:599–609

    Article  CAS  PubMed  Google Scholar 

  • Lin XX, Sen I, Janssens GE, Zhou X, Fonslow BR, Edgar D, Stroustrup N, Swoboda P, Yates JR 3rd, Ruvkun G, Riedel CG (2018) DAF-16/FOXO and HLH-30/TFEB function as combinatorial transcription factors to promote stress resistance and longevity. Nat Commun 9:4400

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu H, Wang S, Hang W, Gao J, Zhang W, Cheng Z, Yang C, He J, Zhou J, Chen J, Shi A (2018) LET-413/Erbin acts as a RAB-5 effector to promote RAB-10 activation during endocytic recycling. J Cell Biol 217:299–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu R, Maduro M, Li F, Li HW, Broitman-Maduro G, Li WX, Ding SW (2005) Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans. Nature 436:1040–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macneil LT, Walhout AJ (2013) Food, pathogen, signal: the multifaceted nature of a bacterial diet. Worm 2:e26454

    Article  PubMed  PubMed Central  Google Scholar 

  • MacNeil LT, Watson E, Arda HE, Zhu LJ, Walhout AJ (2013) Diet-induced developmental acceleration independent of TOR and insulin in C. elegans. Cell 153:240–252

    Article  CAS  PubMed  Google Scholar 

  • MacQueen AJ, Baggett JJ, Perumov N, Bauer RA, Januszewski T, Schriefer L, Waddle JA (2005) ACT-5 is an essential Caenorhabditis elegans actin required for intestinal microvilli formation. Mol Biol Cell 16:3247–3259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maduro M, Hill RJ, Heid PJ, Newman-Smith ED, Zhu J, Priess J, Rothman J (2005) Genetic redundancy in endoderm specification within the genus Caenorhabditis. Dev Biol 284:509–522

    Article  CAS  PubMed  Google Scholar 

  • Maduro MF (2017) Gut development in C. elegans. Semin Cell Dev Biol 66:3–11

    Article  CAS  PubMed  Google Scholar 

  • Maduro MF, Meneghini MD, Bowerman B, Broitman-Maduro G, Rothman JH (2001) Restriction of mesendoderm to a single blastomere by the combined action of SKN-1 and a GSK-3beta homolog is mediated by MED-1 and -2 in C. elegans. Mol Cell 7:475–485

    Article  CAS  PubMed  Google Scholar 

  • Magner DB, Wollam J, Shen Y, Hoppe C, Li D, Latza C, Rottiers V, Hutter H, Antebi A (2013) The NHR-8 nuclear receptor regulates cholesterol and bile acid homeostasis in C. elegans. Cell Metab 18:212–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallo GV, Kurz CL, Couillault C, Pujol N, Granjeaud S, Kohara Y, Ewbank JJ (2002) Inducible antibacterial defense system in C. elegans. Curr Biol 12:1209–1214

    Article  CAS  PubMed  Google Scholar 

  • Mango SE (2009) The molecular basis of organ formation: insights from the C. elegans foregut. Annu Rev Cell Dev Biol 25:597–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin J, Abubucker S, Heizer E, Taylor CM, Mitreva M (2012) Nematode.net update 2011: addition of data sets and tools featuring next-generation sequencing data. Nucleic Acids Res 40:D720–D728

    Article  CAS  PubMed  Google Scholar 

  • McCormick M, Chen K, Ramaswamy P, Kenyon C (2011) New genes that extend Caenorhabditis elegans' lifespan in response to reproductive signals. Aging Cell 11:192–202

    Article  CAS  PubMed  Google Scholar 

  • McGee MD, Weber D, Day N, Vitelli C, Crippen D, Herndon LA, Hall DH, Melov S (2011) Loss of intestinal nuclei and intestinal integrity in aging C. elegans. Aging Cell 10:699–710

    Article  CAS  PubMed  Google Scholar 

  • McGhee JD 2007. The C. elegans intestine. WormBook, 1-36

  • McGhee JD, Fukushige T, Krause MW, Minnema SE, Goszczynski B, Gaudet J, Kohara Y, Bossinger O, Zhao Y, Khattra J, Hirst M, Jones SJ, Marra MA, Ruzanov P, Warner A, Zapf R, Moerman DG, Kalb JM (2009) ELT-2 is the predominant transcription factor controlling differentiation and function of the C. elegans intestine, from embryo to adult. Dev Biol 327:551–565

    Article  CAS  PubMed  Google Scholar 

  • McGhee JD, Sleumer MC, Bilenky M, Wong K, McKay SJ, Goszczynski B, Tian H, Krich ND, Khattra J, Holt RA, Baillie DL, Kohara Y, Marra MA, Jones SJ, Moerman DG, Robertson AG (2007) The ELT-2 GATA-factor and the global regulation of transcription in the C. elegans intestine. Dev Biol 302:627–645

    Article  CAS  PubMed  Google Scholar 

  • Miguel-Aliaga I, Jasper H, Lemaitre B (2018) Anatomy and physiology of the digestive tract of Drosophila melanogaster. Genetics 210:357–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohrlen F, Hutter H, Zwilling R (2003) The astacin protein family in Caenorhabditis elegans. Eur J Biochem 270:4909–4920

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Arriola E, El Hafidi M, Ortega-Cuellar D, Carvajal K (2016) AMP-activated protein kinase regulates oxidative metabolism in Caenorhabditis elegans through the NHR-49 and MDT-15 transcriptional regulators. PLoS One 11:e0148089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Barrell D, Bateman A, Binns D, Biswas M, Bradley P, Bork P, Bucher P, Copley RR, Courcelle E, Das U, Durbin R, Falquet L, Fleischmann W, Griffiths-Jones S, Haft D, Harte N, Hulo N, Kahn D, Kanapin A, Krestyaninova M, Lopez R, Letunic I, Lonsdale D, Silventoinen V, Orchard SE, Pagni M, Peyruc D, Ponting CP, Selengut JD, Servant F, Sigrist CJ, Vaughan R, Zdobnov EM (2003) The InterPro database, 2003 brings increased coverage and new features. Nucleic Acids Res 31:315–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami R, Okumura T, Uchiyama H (2005) GATA factors as key regulatory molecules in the development of Drosophila endoderm. Develop Growth Differ 47:581–589

    Article  CAS  Google Scholar 

  • Murphy CT, Hu PJ 2013. Insulin/insulin-like growth factor signaling in C. elegans. WormBook, 1-43

  • Narayanaswamy N, Chakraborty K, Saminathan A, Zeichner E, Leung K, Devany J, Krishnan Y (2018) A pH-correctable, DNA-based fluorescent reporter for organellar calcium. Nat Methods 16:95–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nehrke K, Denton J, Mowrey W (2008) Intestinal Ca2+ wave dynamics in freely moving C. elegans coordinate execution of a rhythmic motor program. Am J Phys Cell Phys 294:C333–C344

    Article  CAS  Google Scholar 

  • Nuez I, Felix MA (2012) Evolution of susceptibility to ingested double-stranded RNAs in Caenorhabditis nematodes. PLoS One 7:e29811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Rourke EJ, Soukas AA, Carr CE, Ruvkun G (2009) C. elegans major fats are stored in vesicles distinct from lysosome-related organelles. Cell Metab 10:430–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okkema PG, Harrison SW, Plunger V, Aryana A, Fire A (1993) Sequence requirements for myosin gene expression and regulation in Caenorhabditis elegans. Genetics 135:385–404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okumura T, Matsumoto A, Tanimura T, Murakami R (2005) An endoderm-specific GATA factor gene, dGATAe, is required for the terminal differentiation of the Drosophila endoderm. Dev Biol 278:576–586

    Article  CAS  PubMed  Google Scholar 

  • Owraghi M, Broitman-Maduro G, Luu T, Roberson H, Maduro MF (2010) Roles of the Wnt effector POP-1/TCF in the C. elegans endomesoderm specification gene network. Dev Biol 340:209–221

    Article  CAS  PubMed  Google Scholar 

  • Palgunow D, Klapper M, Doring F (2012) Dietary restriction during development enlarges intestinal and hypodermal lipid droplets in Caenorhabditis elegans. PLoS One 7:e46198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panda O, Akagi AE, Artyukhin AB, Judkins JC, Le HH, Mahanti P, Cohen SM, Sternberg PW, Schroeder FC (2017) Biosynthesis of modular Ascarosides in C. elegans. Angew Chem Int Ed Eng 56:4729–4733

    Article  CAS  Google Scholar 

  • Paradis S, Ruvkun G (1998) Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev 12:2488–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peres TV, Arantes LP, Miah MR, Bornhorst J, Schwerdtle T, Bowman AB, Leal RB, Aschner M (2018) Role of Caenorhabditis elegans AKT-1/2 and SGK-1 in manganese toxicity. Neurotox Res 34:584–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pukkila-Worley R, Ausubel FM (2012) Immune defense mechanisms in the Caenorhabditis elegans intestinal epithelium. Curr Opin Immunol 24:3–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen JP, Feldman JL, Reddy SS, Priess JR (2013) Cell interactions and patterned intercalations shape and link epithelial tubes in C elegans. PLoS Genet 9:e1003772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratnappan R, Amrit FR, Chen SW, Gill H, Holden K, Ward J, Yamamoto KR, Olsen CP, Ghazi A (2014) Germline signals deploy NHR-49 to modulate fatty-acid beta-oxidation and desaturation in somatic tissues of C. elegans. PLoS Genet 10:e1004829

    Article  PubMed  PubMed Central  Google Scholar 

  • Rauthan M, Pilon M (2011) The mevalonate pathway in C elegans. Lipids Health Dis 10:243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rechavi O, Houri-Ze’evi L, Anava S, Goh WSS, Kerk SY, Hannon GJ, Hobert O (2014) Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 158:277–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinke SN, Hu X, Sykes BD, Lemire BD (2010) Caenorhabditis elegans diet significantly affects metabolic profile, mitochondrial DNA levels, lifespan and brood size. Mol Genet Metab 100:274–282

    Article  CAS  PubMed  Google Scholar 

  • Rocheleau CE, Downs WD, Lin R, Wittmann C, Bei Y, Cha YH, Ali M, Priess JR, Mello CC (1997) Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos. Cell 90:707–716

    Article  CAS  PubMed  Google Scholar 

  • Roh HC, Collier S, Guthrie J, Robertson JD, Kornfeld K (2012) Lysosome-related organelles in intestinal cells are a zinc storage site in C. elegans. Cell Metab 15:88–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosa BA, Jasmer DP, Mitreva M (2014) Genome-wide tissue-specific gene expression, co-expression and regulation of co-expressed genes in adult nematode Ascaris suum. PLoS Negl Trop Dis 8:e2678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato K, Norris A, Sato M, Grant BD, 2014. C. elegans as a model for membrane traffic. WormBook, 1-47

  • Seah NE, de Magalhaes Filho CD, Petrashen AP, Henderson HR, Laguer J, Gonzalez J, Dillin A, Hansen M, Lapierre LR (2016) Autophagy-mediated longevity is modulated by lipoprotein biogenesis. Autophagy 12:261–272

    Article  CAS  PubMed  Google Scholar 

  • Seymour MK, Wright KA, Doncaster CC (1983) The action of the anterior feeding apparatus of Caenorhabditis elegans (Nematoda: Rhabditida). J Zool 201:527–539

    Article  Google Scholar 

  • Sheng M, Hosseinzadeh A, Muralidharan SV, Gaur R, Selstam E, Tuck S (2015) Aberrant fat metabolism in Caenorhabditis elegans mutants with defects in the defecation motor program. PLoS One 10:e0124515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shetty P, Lo MC, Robertson SM, Lin R (2005) C. elegans TCF protein, POP-1, converts from repressor to activator as a result of Wnt-induced lowering of nuclear levels. Dev Biol 285:584–592

    Article  CAS  PubMed  Google Scholar 

  • Shin TH, Yasuda J, Rocheleau CE, Lin R, Soto M, Bei Y, Davis RJ, Mello CC (1999) MOM-4, a MAP kinase kinase kinase-related protein, activates WRM-1/LIT-1 kinase to transduce anterior/posterior polarity signals in C. elegans. Mol Cell 4:275–280

    Article  CAS  PubMed  Google Scholar 

  • Silverman GA, Luke CJ, Bhatia SR, Long OS, Vetica AC, Perlmutter DH, Pak SC (2009) Modeling molecular and cellular aspects of human disease using the nematode Caenorhabditis elegans. Pediatr Res 65:10–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sommermann EM, Strohmaier KR, Maduro MF, Rothman JH (2010) Endoderm development in Caenorhabditis elegans: the synergistic action of ELT-2 and -7 mediates the specification → differentiation transition. Dev Biol 347:154–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song BM, Avery L (2013) The pharynx of the nematode C elegans: a model system for the study of motor control. Worm 2:e21833

    Article  PubMed  PubMed Central  Google Scholar 

  • Spence JR, Lauf R, Shroyer NF (2011) Vertebrate intestinal endoderm development. Dev Dyn 240:501–520

    Article  PubMed  PubMed Central  Google Scholar 

  • Steinbaugh MJ, Narasimhan SD, Robida-Stubbs S, Moronetti Mazzeo LE, Dreyfuss JM, Hourihan JM, Raghavan P, Operana TN, Esmaillie R, Blackwell TK, 2015. Lipid-mediated regulation of SKN-1/Nrf in response to germ cell absence. Elife 4

  • Stiernagle T, 2006. Maintenance of C. elegans. WormBook, 1–11

  • Sullivan-Brown JL, Tandon P, Bird KE, Dickinson DJ, Tintori SC, Heppert JK, Meserve JH, Trogden KP, Orlowski SK, Conlon FL, Goldstein B (2016) Identifying regulators of morphogenesis common to vertebrate neural tube closure and Caenorhabditis elegans gastrulation. Genetics 202:123–139

    Article  CAS  PubMed  Google Scholar 

  • Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100:64–119

    Article  CAS  PubMed  Google Scholar 

  • Tan MW, Shapira M (2011) Genetic and molecular analysis of nematode-microbe interactions. Cell Microbiol 13:497–507

    Article  CAS  PubMed  Google Scholar 

  • Tanji T, Nishikori K, Haga S, Kanno Y, Kobayashi Y, Takaya M, Gengyo-Ando K, Mitani S, Shiraishi H, Ohashi-Kobayashi A (2016) Characterization of HAF-4- and HAF-9-localizing organelles as distinct organelles in Caenorhabditis elegans intestinal cells. BMC Cell Biol 17:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarr DE (2012) Distribution and characteristics of ABFs, cecropins, nemapores, and lysozymes in nematodes. Dev Comp Immunol 36:502–520

    Article  CAS  PubMed  Google Scholar 

  • Taubert S, Van Gilst MR, Hansen M, Yamamoto KR (2006) A mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and -independent pathways in C. elegans. Genes Dev 20:1137–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tauffenberger A, Parker JA (2014) Heritable transmission of stress resistance by high dietary glucose in Caenorhabditis elegans. PLoS Genet 10:e1004346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tcherepanova I, Bhattacharyya L, Rubin CS, Freedman JH (2000) Aspartic proteases from the nematode Caenorhabditis elegans. Structural organization and developmental and cell-specific expression of asp-1. J Biol Chem 275:26359–26369

    Article  CAS  PubMed  Google Scholar 

  • Teramoto T, Iwasaki K (2006) Intestinal calcium waves coordinate a behavioral motor program in C. elegans. Cell Calcium 40:319–327

    Article  CAS  PubMed  Google Scholar 

  • Thomas JH (1990) Genetic analysis of defecation in Caenorhabditis elegans. Genetics 124:855–872

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thorpe CJ, Schlesinger A, Bowerman B (2000) Wnt signalling in Caenorhabditis elegans: regulating repressors and polarizing the cytoskeleton. Trends Cell Biol 10:10–17

    Article  PubMed  Google Scholar 

  • Timmons L, Fire A (1998) Specific interference by ingested dsRNA. Nature 395:854

    Article  CAS  PubMed  Google Scholar 

  • Troemel ER, Felix MA, Whiteman NK, Barriere A, Ausubel FM (2008) Microsporidia are natural intracellular parasites of the nematode Caenorhabditis elegans. PLoS Biol 6:2736–2752

    Article  CAS  PubMed  Google Scholar 

  • True JR, Haag ES (2001) Developmental system drift and flexibility in evolutionary trajectories. Evol Dev 3:109–119

    Article  CAS  PubMed  Google Scholar 

  • Van Gilst MR, Hadjivassiliou H, Jolly A, Yamamoto KR (2005) Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans. PLoS Biol 3:e53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinci G, Xia X, Veitia RA (2008) Preservation of genes involved in sterol metabolism in cholesterol auxotrophs: facts and hypotheses. PLoS One 3:e2883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Reuss SH (2018) Exploring modular glycolipids involved in nematode chemical communication. Chimia (Aarau) 72:297–303

    Article  CAS  Google Scholar 

  • von Reuss SH, Schroeder FC (2015) Combinatorial chemistry in nematodes: modular assembly of primary metabolism-derived building blocks. Nat Prod Rep 32:994–1006

    Article  Google Scholar 

  • Waaijers S, Boxem M (2014) Engineering the Caenorhabditis elegans genome with CRISPR/Cas9. Methods 68:381–388

    Article  CAS  PubMed  Google Scholar 

  • Wang MC, O’Rourke EJ, Ruvkun G (2008) Fat metabolism links germline stem cells and longevity in C. elegans. Science 322:957–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson E, Walhout AJ (2014) Caenorhabditis elegans metabolic gene regulatory networks govern the cellular economy. Trends Endocrinol Metab 25:502–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watts JL, Ristow M (2017) Lipid and carbohydrate metabolism in Caenorhabditis elegans. Genetics 207:413–446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whangbo JS, Weisman AS, Chae J, Hunter CP (2017) SID-1 domains important for dsRNA import in Caenorhabditis elegans. G3 (Bethesda) 7:3887–3899

    Article  CAS  Google Scholar 

  • White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond Ser B Biol Sci 314:1–340

    Article  CAS  Google Scholar 

  • Wiesenfahrt T, Berg JY, Nishimura EO, Robinson AG, Goszczynski B, Lieb JD, McGhee JD (2015) The function and regulation of the GATA factor ELT-2 in the C. elegans endoderm. Development 143:483–491

    Article  CAS  PubMed  Google Scholar 

  • Winston WM, Sutherlin M, Wright AJ, Feinberg EH, Hunter CP (2007) Caenorhabditis elegans SID-2 is required for environmental RNA interference. Proc Natl Acad Sci U S A 104:10565–10570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witting M, Hastings J, Rodriguez N, Joshi CJ, Hattwell JPN, Ebert PR, van Weeghel M, Gao AW, Wakelam MJO, Houtkooper RH, Mains A, Le Novere N, Sadykoff S, Schroeder F, Lewis NE, Schirra HJ, Kaleta C, Casanueva O (2018) Modeling meets metabolomics—the WormJam consensus model as basis for metabolic studies in the model organism Caenorhabditis elegans. Front Mol Biosci 5:96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodruff GC, Phillips PC (2018) Field studies reveal a close relative of C elegans thrives in the fresh figs of Ficus septica and disperses on its Ceratosolen pollinating wasps. BMC Ecol 18:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Wylie T, Martin J, Abubucker S, Yin Y, Messina D, Wang Z, McCarter JP, Mitreva M (2008) NemaPath: online exploration of KEGG-based metabolic pathways for nematodes. BMC Genomics 9:525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao R, Chun L, Ronan EA, Friedman DI, Liu J, Xu XZ (2015) RNAi interrogation of dietary modulation of development, metabolism, behavior, and aging in C. elegans. Cell Rep 11:1123–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yilmaz LS, Walhout AJ (2016) A Caenorhabditis elegans genome-scale metabolic network model. Cell Syst 2:297–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin Y, Martin J, Abubucker S, Scott AL, McCarter JP, Wilson RK, Jasmer DP, Mitreva M (2008) Intestinal transcriptomes of nematodes: comparison of the parasites Ascaris suum and Haemonchus contortus with the free-living Caenorhabditis elegans. PLoS Negl Trop Dis 2:e269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokota S, Togo SH, Maebuchi M, Bun-Ya M, Haraguchi CM, Kamiryo T (2002) Peroxisomes of the nematode Caenorhabditis elegans: distribution and morphological characteristics. Histochem Cell Biol 118:329–336

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Abraham N, Khan LA, Hall DH, Fleming JT, Gobel V (2011a) Apicobasal domain identities of expanding tubular membranes depend on glycosphingolipid biosynthesis. Nat Cell Biol 13:1189–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Kim A, Abraham N, Khan LA, Hall DH, Fleming JT, Gobel V (2012) Clathrin and AP-1 regulate apical polarity and lumen formation during C. elegans tubulogenesis. Development 139:2071–2083

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Bakheet R, Parhar RS, Huang CH, Hussain MM, Pan X, Siddiqui SS, Hashmi S (2011b) Regulation of fat storage and reproduction by Kruppel-like transcription factor KLF3 and fat-associated genes in Caenorhabditis elegans. J Mol Biol 411:537–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Holdorf AD, Walhout AJ (2017a) C. elegans and its bacterial diet as a model for systems-level understanding of host-microbiota interactions. Curr Opin Biotechnol 46:74–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang SO, Box AC, Xu N, Le Men J, Yu J, Guo F, Trimble R, Mak HY (2010) Genetic and dietary regulation of lipid droplet expansion in Caenorhabditis elegans. Proc Natl Acad Sci U S A 107:4640–4645

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang YK, Sanchez-Ayala MA, Sternberg PW, Srinivasan J, Schroeder FC (2017b) Improved synthesis for modular Ascarosides uncovers biological activity. Org Lett 19:2837–2840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Long L, Xu W, Campbell RF, Large EE, Greene JS, McGrath, P.T., 2018. Changes to social feeding behaviors are not sufficient for fitness gains of the Caenorhabditis elegans N2 reference strain. Elife 7

  • Zhou Y, Wang Y, Zhang X, Bhar S, Jones Lipinski RA, Han J, Feng L, Butcher RA (2018) Biosynthetic tailoring of existing ascaroside pheromones alters their biological function in C elegans. Elife 7:e33286

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu G, Yin F, Wang L, Wei W, Jiang L, Qin J (2016) Modeling type 2 diabetes-like hyperglycemia in C. elegans on a microdevice. Integr Biol (Camb) 8:30–38

    Article  CAS  Google Scholar 

  • Zhu J, Hill RJ, Heid PJ, Fukuyama M, Sugimoto A, Priess JR, Rothman JH (1997) End-1 encodes an apparent GATA factor that specifies the endoderm precursor in Caenorhabditis elegans embryos. Genes Dev 11:2883–2896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zorn AM, Wells JM (2009) Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol 25:221–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We apologize to the many colleagues whose work we could not cite for space reasons. The light and fluorescence microscopy images in Fig. 1 were provided by Gina Broitman-Maduro.

Funding

Work done in the Maduro lab that was cited here was funded by NSF Grant IOS No. 1258054.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morris F. Maduro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimov, I., Maduro, M.F. The C. elegans intestine: organogenesis, digestion, and physiology. Cell Tissue Res 377, 383–396 (2019). https://doi.org/10.1007/s00441-019-03036-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-019-03036-4

Keywords

Navigation