Skip to main content

Advertisement

Log in

Horse spermatogonial stem cell cryopreservation: feasible protocols and potential biotechnological applications

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The establishment of proper conditions for spermatogonial stem cells (SSCs) cryopreservation and storage represents an important biotechnological approach for the preservation of the genetic stock of valuable animals. This study demonstrates the effects of different cryopreservation protocols on the survival rates and phenotypic expression of SSCs in horses. The cells were enzymatically isolated from testes of eight adult horses. After enrichment and characterization of germ cells in the suspension, the feasibility of several cryopreservation protocols were evaluated. Three different cryomedia compositions, associated with three different methods of freezing (vitrification, slow-freezing and fast-freezing) were evaluated. Based on the rates of viable SSCs found before and after thawing, as well as the number of recovered cells after cryopreservation, the best results were obtained utilizing the DMSO-based cryomedia associated with the slow-freezing method. In addition, when isolated cells were cultured in vitro, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and immunofluorescence analysis indicated that the cryopreserved cells were as metabolically active as the fresh cells and were also expressing typical SSCs proteins (VASA, NANOS2 and GFRA1). Therefore, our results indicate that equine SSCs can be cryopreserved without impairment of structure, function, or colony-forming abilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DMEM:

Dulbecco’s Modified Eagle’s medium

DMSO:

Dimethyl sulfoxide

EG:

Ethylene glycol

FBS:

Fetal bovine serum

GFRA1:

Glial cell line derived neurotrophic factor family receptor alpha 1

MTT:

Methylthiazol tetrazolium

NANOS2:

Nanos C2HC-type zinc finger 2

SSCs:

Spermatogonial stem cells

VASA:

DDX4, RNA helicase expressed in the germ cells

References

  • Abrishami M, Anzar M, Yang Y, Honaramooz A (2010) Cryopreservation of immature porcine testis tissue to maintain its developmental potential after xenografting into recipient mice. Theriogenology 73:86–96

    Article  CAS  PubMed  Google Scholar 

  • Alipoor FJ, Gilani MA, Yazdi PE, Hampa AD, Hosseinifar H, Alipour H, Panah ML (2009) Achieving high survival rate following cryopreservation after isolation of prepubertal mouse spermatogonial cells. J Assist Reprod Genet 26:143–149

    Article  PubMed  PubMed Central  Google Scholar 

  • Alvarenga MA, Papa FO, Ramires Neto C (2016) Advances in stallion semen cryopreservation. Vet Clin North Am Equine Pract 32:521–530

    Article  PubMed  Google Scholar 

  • Avarbock MR, Brinster CJ, Brinster RL (1996) Reconstitution of spermatogenesis from frozen spermatogonial stem cells. Nat Med 2:693–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai H, Wu JY, An XL, Zhao XX, Wang ZZ, Tang B, Yue ZP, Li ZY, Zhang XM (2016) Enrichment and culture of spermatogonia from cryopreserved adult bovine testis tissue. Anim Reprod Sci 166:109–115

    Article  PubMed  Google Scholar 

  • Costa GMJ, Avelar GF, Resende-Neto JV, Campos-Jr PH, Lacerda SM, Andrade BSC, Thomé RG, Hofmann MC, França LR (2012) Spermatogonial stem cell markers and niche in equids. PLoS ONE 7:1–13

    Google Scholar 

  • Dobrinski I (2005) Germ cell transplantation and testis tissue xenografting in domestic animals. Anim Reprod Sci 89:137–145

    Article  PubMed  Google Scholar 

  • Fahy GM, Wowk B (2015) Principles of cryopreservation by vitrification. Methods Mol Biol 1257:21–82

    Article  CAS  PubMed  Google Scholar 

  • Ferrer MS, Lutjemeier BJ, Koopman T, Pierucci-alves F, Weiss ML (2011) Xenogeneic transplantion of equine testicular cells into seminiferous tubules of immunocompetent rats. Theriogenology 75:1258–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuller B, Paynter S (2004) Fundamentals of cryobiology in reproductive medicine. Reprod BioMed Online 9:680–691

    Article  PubMed  Google Scholar 

  • Giudice MG, de Michele F, Poels J, Vermeulen M, Wyns C (2017) Update on fertility restoration from prepubertal spermatogonial stem cells: how far are we from clinical practice? Stem Cell Res. http://doi.org/10.1016/j.scr.2017.01.009

  • Hamra FK, Chapman KM, Nguyen DM, Williams-Stephens AA, Hammer RE, Garbers DL (2005) Self renewal, expansion, and transfection of rat spermatogonial stem cells in culture. Proc Natl Acad Sci U S A 102:17430–17435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermann BP, Sukhwani M, Lin CC, Sheng Y, Tomko J, Rodriguez M, Shuttleworth JJ, McFarland D, Hobbs RM, Pandolfi PP, Schatten GP, Orwig KE (2007) Characterization, cryopreservation, and ablation of spermatogonial stem cells in adult rhesus macaques. Stem Cells 25:2330–2338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izadyar F, Matthis-Rijsenbilt JJ, Den Ouden K, Creemers LB, Woelders H, De Rooij DG (2002) Development of a cryopreservation protocol for type a spermatogonia. J Androl 23:537–545

    CAS  PubMed  Google Scholar 

  • Jung H, Kim N, Yoon M (2016) Reproductive stage-dependent effects of additional cryoprotectant agents for the cryopreservation of stallion germ cells. Anim Reprod Sci 173:24–28

    Article  CAS  PubMed  Google Scholar 

  • Kanatsu-Shinohara M, Ogonuki N, Inoue K, Ogura A, Toyokuni S, Shinohara T (2008) Restoration of fertility in infertile mice by transplantation of cryopreserved male germline stem cells. Hum Reprod 18:2660–2667

    Article  Google Scholar 

  • Karlsson JO, Toner M (1996) Long-term storage of tissues by cryopreservation: critical issues. Biomaterials 17:243–256

    Article  CAS  PubMed  Google Scholar 

  • Keros V, Rosenlund B, Hultenby K, Aghajanova L, Levkov L, Hovatta O (2005) Optimizing cryopreservation of human testicular tissue—comparison of protocols with glycerol, propanediol and dimethyl sulphoxide as cryoprotectants. Hum Reprod 20:1676–1687

    Article  CAS  PubMed  Google Scholar 

  • Keros V, Hultenby K, Borgstrom B, Fridstrom M, Jahnukainen K, Hovatta O (2007) Methods of cryopreservation of testicular tissue with viable spermatogonia in pre-pubertal boys undergoing gonadotoxic cancer treatment. Hum Reprod 22:1384–1395

    Article  CAS  PubMed  Google Scholar 

  • Kim KJ, Lee YA, Kim BJ, Kim YH, Kim BG, Kang HG, Jung SE, Choi SH, Schmidt JA, Ryu BY (2015) Cryopreservation of putative pre-puberal bovine spermatogonial stem cell by slow freezing. Cryobiology 70:175–183

    Article  CAS  PubMed  Google Scholar 

  • Koruji SM, Movahedin M, Mowla SJ, Gourabi H (2007) Colony formation ability of frozen thawed spermatogonial stem cell from adult mouse. Int J Reprod Biomed 5:109–115

    Google Scholar 

  • Lacerda SM, Batlouni SR, Costa GM, Segatelli TM, Quirino BR, Queiroz BM, Kalapothakis E, França LR (2010) A new and fast technique to generate offspring after germ cells transplantation in adult fish: the Nile tilapia (Oreochromis niloticus) model. PLoS ONE 5:e10740

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee YA, Kim YH, Kim BJ, Jung MS, Auh JH, Seo JT, Park YS, Lee SH, Ryu BY (2013) Cryopreservation of mouse spermatogonial stem cells in dimethysulfoxide and polyethylene glycol. Biol Reprod. http://doi.org/10.1095/biolreprod.113.111195

  • Lee YA, Kim YH, Ha SJ, Kim BJ, Kim KJ, Jung MS, Kim BG, Ryu BY (2014) Effect of sugar molecules on the cryopreservation of mouse spermatogonial stem cells. Fertil Steril 101:1165–1175

    Article  CAS  PubMed  Google Scholar 

  • Lee KH, Lee WY, Kim DH, Lee SH, Do JT, Park C, Kim JH, Choi YS, Song H (2016) Vitrified canine testicular cells allow the formation of spermatogonial stem cells and seminiferous tubules following their xenotransplantation into nude mice. Sci Rep 6:21919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loomis PR, Graham JK (2008) Commercial semen freezing: individual male variation in cryosurvival and the response of stallion sperm to customized freezing protocols. Anim Reprod Sci 5:119–128

    Article  Google Scholar 

  • Luo J, Megee S, Rathi R, Dobrinski I (2006) Protein gene product 9.5 is a spermatogonia-specific marker in the pig testis: application to enrichment and culture of porcine spermatogonia. Mol Reprod Dev 73:1531–1540

    Article  CAS  PubMed  Google Scholar 

  • Marquez-Curtis LA, Janowska-Wieczorek A, McGann LE, Elliott JA (2015) Mesenchymal stromal cells derived from various tissues: biological, clinical and cryopreservation aspects. Cryobiology 71:181–197

    Article  CAS  PubMed  Google Scholar 

  • Meryman HT (2007) Cryopreservation of living cells: principles and practice. Transfusion 47:935–945

    Article  CAS  PubMed  Google Scholar 

  • Mirzapour T, Movahedin M, Tengku Ibrahim TA, Haron AW, Nowroozi MR (2013) Evaluation of the effects of cryopreservation on viability, proliferation and colony formation of human spermatogonial stem cells in vitro culture. Andrologia 45:26–34

    Article  CAS  PubMed  Google Scholar 

  • Oatley JM, Reeves JJ, McLean DJ (2004) Biological activity of cryopreserved bovine spermatogonial stem cells during in vitro culture. Biol Reprod 71:942–947

    Article  CAS  PubMed  Google Scholar 

  • Ogawa T, Ohmura M, Ohbo K (2005) The niche for spermatogonial stem cells in the mammalian testis. Int J Hematol 82:381–388

    Article  CAS  PubMed  Google Scholar 

  • Onofre J, Baert Y, Faes K, Goossens E (2016) Cryopreservation of testicular tissue or testicular cell suspensions: a pivotal step in fertility preservation. Hum Reprod Update 22:744–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orwig KE, Schlatt S (2005) Cryopreservation and transplantation of spermatogonia and testicular tissue for preservation of male fertility. J Natl Cancer Inst Monogr 34:51–56

    Article  Google Scholar 

  • Pacchiarotti J, Ramos T, Howerton K, Greilach S, Zaragoza K, Olmstead M, Izadyar F (2013) Developing a clinical-grade cryopreservation protocol for human testicular tissue and cells. Biomed Res Int 2013:930–962

    Article  Google Scholar 

  • Pegg DE (2007) Principles of cryopreservation. Methods Mol Biol 368:39–57

    Article  CAS  PubMed  Google Scholar 

  • Peña FJ, García BM, Samper JC, Aparicio IM, Tapia JA, Ferrusola CO (2011) Dissecting the molecular damage to stallion spermatozoa: the way to improve current cryopreservation protocols? Theriogenology 76:1177–1186

    Article  PubMed  Google Scholar 

  • Pukazhenthi BS, Nagashima J, Travis AJ, Costa GMJ, Escobar EN, França LR, Wildt DE (2015) Slow freezing, but not vitrification supports complete spermatogenesis in cryopreserved, neonatal sheep testicular xenografts. PLoS ONE 10:e0123957

    Article  PubMed  PubMed Central  Google Scholar 

  • Sato T, Katagiri K, Gohbara A, Inoue K, Ogonuki N, Ogura A, Kubota Y, Ogawa T (2011) In vitro production of functional sperm in cultured neonatal mouse testes. Nature 471:504–507

    Article  CAS  PubMed  Google Scholar 

  • Shirazi MS, Heidari B, Naderi MM, Behzadi B, Sarvari A, Borjian-Boroujeni S, Farab M, Shirazi A (2015) Transplantation of goat spermatogonial stem cells into the mouse rete testis. Int J Anim Biol 1:61–68

    Google Scholar 

  • Sieme H, Harrison RA, Petrunkina AM (2008) Cryobiological determinats of frozen sêmen quality, with special reference to stallion. Anim Reprod Sci 107:276–292

    Article  CAS  PubMed  Google Scholar 

  • Silva RC, Costa GM, Lacerda SM, Batlouni SR, Soares JM, Avelar GF, Böttger KB, Silva SFJR, Nogueira MS, Andrade LM, França LR (2012) Germ cell transplantation in felids: a potential approach to preserving endangered species. J Androl 33:264–276

    Article  PubMed  Google Scholar 

  • Simione FP (1998) Cryopreservation manual. ATCC and Nalge Nunc International, New York

    Google Scholar 

  • Stone RW (1993) Clinical updates on the use of dimethylsulfoxide. Canine Pract 18:16–19

    Google Scholar 

  • Tang L, Rodriguez-Sosa JR, Dobrinski I (2012) Germ cell transplantation and testis tissue xenografting in mice. J Vis Exp. http://doi.org/10.3791/3545

  • Wu X, Goodyear SM, Abramowitz LK, Bartolomei MS, Tobias JW, Avarbock MR, Brinster RL (2012) Fertile offspring derived from mouse spermatogonial stem cells cryopreserved for more than 14 years. Hum Reprod 27:1249–1259

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu JY, Sun YX, Wang AB, Che GY, Hu TJ, Zhang MX (2013) Effect of newborn bovine serum on cryopreservation of adult bovine testicular tissue. J Androl 46:308–312

    Article  Google Scholar 

  • Wyns C, Curaba M, Vanabelle B, Van LA, Donnez J (2010) Options for fertility preservation in prepubertal boys. Hum Reprod Update 16:312–328

    Article  PubMed  Google Scholar 

  • Yoshizaki G, Fujinuma K, Iwasaki Y, Okutsu T, Shikina S, Yazawa R, Takeuchi Y (2011) Spermatogonial transplantation in fish: a novel method for the preservation of genetic resources. Comp Biochem Physiol Part D 6:55–61

    Google Scholar 

  • Yuan Z, Hou R, Wu J (2009) Generation of mice by transplantation of an adult spermatogonial cell line after cryopreservation. Cell Prolif 42:123–131

    Article  CAS  PubMed  Google Scholar 

  • Zeng W, Alpaugh W, Stefanovski D, Schlingmann K, Dobrinski I, Turner RM (2017) Xenografting of isolated equine (Equus Caballus) testis cells results in de novo morphogenesis of seminiferous tubules but not spermatogenesis. Andrology 5:336–346

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Technical help from Mara Lívia Santos and Barbara Ramalho Ladeira Cardoso are highly appreciated. The support from the Image Acquisition and Processing Center (CAPI- ICB/UFMG) were of great importance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guilherme M. J. Costa or Luiz R. França.

Ethics declarations

Funding information

This study was funded by the National Council for Scientific and Technological Development (CNPq), Foundation to Support Research in the State of Minas Gerais (FAPEMIG), Coordination for the Improvement of Higher Education Personnel (CAPES) and PRPq-UFMG.

Declaration of interest

The authors declare that they have no conflict of interest.

Research involving animals

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, G.M.J., Avelar, G.F., Lacerda, S.M.S.N. et al. Horse spermatogonial stem cell cryopreservation: feasible protocols and potential biotechnological applications. Cell Tissue Res 370, 489–500 (2017). https://doi.org/10.1007/s00441-017-2673-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-017-2673-1

Keywords

Navigation