Skip to main content

Advertisement

Log in

Epigenetics of kidney disease

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

DNA methylation and histone modifications determine renal programming and the development and progression of renal disease. The identification of the way in which the renal cell epigenome is altered by environmental modifiers driving the onset and progression of renal diseases has extended our understanding of the pathophysiology of kidney disease progression. In this review, we focus on current knowledge concerning the implications of epigenetic modifications during renal disease from early development to chronic kidney disease progression including renal fibrosis, diabetic nephropathy and the translational potential of identifying new biomarkers and treatments for the prevention and therapy of chronic kidney disease and end-stage kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Advani A, Huang Q, Thai K, Advani SL, White KE, Kelly DJ, Yuen DA, Connelly KA, Marsden PA, Gilbert RE (2011) Long-term administration of the histone deacetylase inhibitor vorinostat attenuates renal injury in experimental diabetes through an endothelial nitric oxide synthase-dependent mechanism. Am J Pathol 178:2205–2214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Kafaji G, Al-Mahroos G, Al-Muhtaresh HA, Skrypnyk C, Sabry MA, Ramadan AR (2016) Decreased expression of circulating microRNA-126 in patients with type 2 diabetic nephropathy: a potential blood-based biomarker. Exp Ther Med 12:815–822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez ML, Khosroheidari M, Eddy E, Kiefer J (2013) Role of microRNA 1207-5P and its host gene, the long non-coding RNA Pvt1, as mediators of extracellular matrix accumulation in the kidney: implications for diabetic nephropathy. PLoS One 8:e77468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amri K, Freund N, Vilar J, Merlet-Benichou C, Lelievre-Pegorier M (1999) Adverse effects of hyperglycemia on kidney development in rats: in vivo and in vitro studies. Diabetes 48:2240–2245

    Article  CAS  PubMed  Google Scholar 

  • Amrouche L, Desbuissons G, Rabant M, Sauvaget V, Nguyen C, Benon A, Barre P, Rabate C, Lebreton X, Gallazzini M, Legendre C, Terzi F, Anglicheau D (2016) MicroRNA-146a in human and experimental ischemic AKI: CXCL8-dependent mechanism of action. J Am Soc Nephrol 28:479–493

    Article  PubMed  Google Scholar 

  • Argyropoulos C, Wang K, Bernardo J, Ellis D, Orchard T, Galas D, Johnson JP (2015) Urinary microRNA profiling predicts the development of microalbuminuria in patients with type 1 diabetes. J Clin Med 4:1498–1517

    Article  PubMed  PubMed Central  Google Scholar 

  • Atzler D, Schwedhelm E, Zeller T (2014) Integrated genomics and metabolomics in nephrology. Nephrol Dial Transplant 29:1467–1474

    Article  CAS  PubMed  Google Scholar 

  • Bai X, Geng J, Zhou Z, Tian J, Li X (2016) MicroRNA-130b improves renal tubulointerstitial fibrosis via repression of Snail-induced epithelial-mesenchymal transition in diabetic nephropathy. Sci Rep 6:20475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barutta F, Tricarico M, Corbelli A, Annaratone L, Pinach S, Grimaldi S, Bruno G, Cimino D, Taverna D, Deregibus MC, Rastaldi MP, Perin PC, Gruden G (2013) Urinary exosomal microRNAs in incipient diabetic nephropathy. PLoS One 8:e73798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barutta F, Bruno G, Matullo G, Chaturvedi N, Grimaldi S, Schalkwijk C, Stehouwer CD, Fuller JH, Gruden G (2016) MicroRNA-126 and micro-/macrovascular complications of type 1 diabetes in the EURODIAB Prospective Complications Study. Acta Diabetol 54:133–139

    Article  PubMed  CAS  Google Scholar 

  • Bechtel W, McGoohan S, Zeisberg EM, Muller GA, Kalbacher H, Salant DJ, Muller CA, Kalluri R, Zeisberg M (2010) Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med 16:544–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckerman P, Ko YA, Susztak K (2014) Epigenetics: a new way to look at kidney diseases. Nephrol Dial Transplant 29:1821–1827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bekdash RA, Zhang C, Sarkar DK (2013) Gestational choline supplementation normalized fetal alcohol-induced alterations in histone modifications, DNA methylation, and proopiomelanocortin (POMC) gene expression in beta-endorphin-producing POMC neurons of the hypothalamus. Alcohol Clin Exp Res 37:1133–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell CG, Teschendorff AE, Rakyan VK, Maxwell AP, Beck S, Savage DA (2010) Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Med Genet 3:33

    Google Scholar 

  • Benyshek DC, Johnston CS, Martin JF (2006) Glucose metabolism is altered in the adequately-nourished grand-offspring (F3 generation) of rats malnourished during gestation and perinatal life. Diabetologia 49:1117–1119

    Article  CAS  PubMed  Google Scholar 

  • Bestor TH (1992) Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain. EMBO J 11:2611–2617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beuchle D, Struhl G, Muller J (2001) Polycomb group proteins and heritable silencing of Drosophila Hox genes. Development 128:993–1004

    CAS  PubMed  Google Scholar 

  • Beyer S, Kristensen MM, Jensen KS, Johansen JV, Staller P (2008) The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF. J Biol Chem 283:36542–36552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatt K, Lanting LL, Jia Y, Yadav S, Reddy MA, Magilnick N, Boldin M, Natarajan R (2016) Anti-inflammatory role of microRNA-146a in the pathogenesis of diabetic nephropathy. J Am Soc Nephrol 27:2277–2288

    Article  CAS  PubMed  Google Scholar 

  • Bieliauskas AV, Pflum MK (2008) Isoform-selective histone deacetylase inhibitors. Chem Soc Rev 37:1402–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogdarina I, Welham S, King PJ, Burns SP, Clark AJ (2007) Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension. Circ Res 100:520–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boor P, Ostendorf T, Floege J (2010) Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat Rev Nephrol 6:643–656

    Article  PubMed  Google Scholar 

  • Brasacchio D, Okabe J, Tikellis C, Balcerczyk A, George P, Baker EK, Calkin AC, Brownlee M, Cooper ME, El-Osta A (2009) Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 58:1229–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brennan EP, Ehrich M, O’Donovan H, Brazil DP, Crean JK, Murphy M, Sadlier DM, Martin F, Godson C, Boom D van den, Maxwell AP, Savage DA (2010) DNA methylation profiling in cell models of diabetic nephropathy. Epigenetics 5:396–401

  • Brennan EP, Nolan KA, Borgeson E, Gough OS, McEvoy CM, Docherty NG, Higgins DF, Murphy M, Sadlier DM, Ali-Shah ST, Guiry PJ, Savage DA, Maxwell AP, Martin F, Godson C, Consortium G (2013) Lipoxins attenuate renal fibrosis by inducing let-7c and suppressing TGFbetaR1. J Am Soc Nephrol 24:627–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brennecke J, Malone CD, Aravin AA, Sachidanandam R, Stark A, Hannon GJ (2008) An epigenetic role for maternally inherited piRNAs in transposon silencing. Science 322:1387–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner BM, Garcia DL, Anderson S (1988) Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens 1:335–347

    Article  CAS  PubMed  Google Scholar 

  • Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chasman DI, Fuchsberger C, Pattaro C, Teumer A, Boger CA, Endlich K, Olden M, Chen MH, Tin A, Taliun D, Li M, Gao X, Gorski M, Yang Q, Hundertmark C, Foster MC, O’Seaghdha CM, Glazer N, Isaacs A, Liu CT, Smith AV, O’Connell JR, Struchalin M, Tanaka T, Li G, Johnson AD, Gierman HJ, Feitosa MF, Hwang SJ, Atkinson EJ, Lohman K, Cornelis MC, Johansson A, Tonjes A, Dehghan A, Lambert JC, Holliday EG, Sorice R, Kutalik Z, Lehtimaki T, Esko T, Deshmukh H, Ulivi S, Chu AY, Murgia F, Trompet S, Imboden M, Coassin S, Pistis G, Consortium CA, Consortium I, Consortium CA, Wtccc HTB, Launer LJ, Aspelund T, Eiriksdottir G, Mitchell BD, Boerwinkle E, Schmidt H, Cavalieri M, Rao M, Hu F, Demirkan A, Oostra BA, Andrade M de, Turner ST, Ding J, Andrews JS, Freedman BI, Giulianini F, Koenig W, Illig T, Meisinger C, Gieger C, Zgaga L, Zemunik T, Boban M, Minelli C, Wheeler HE, Igl W, Zaboli G, Wild SH, Wright AF, Campbell H, Ellinghaus D, Nothlings U, Jacobs G, Biffar R, Ernst F, Homuth G, Kroemer HK, Nauck M, Stracke S, Volker U, Volzke H, Kovacs P, Stumvoll M, Magi R, Hofman A, Uitterlinden AG, Rivadeneira F, Aulchenko YS, Polasek O, Hastie N, Vitart V, Helmer C, Wang JJ, Stengel B, Ruggiero D, Bergmann S, Kahonen M, Viikari J, Nikopensius T, Province M, Ketkar S, Colhoun H, Doney A, Robino A, Kramer BK, Portas L, Ford I, Buckley BM, Adam M, Thun GA, Paulweber B, Haun M, Sala C, Mitchell P, Ciullo M, Kim SK, Vollenweider P, Raitakari O, Metspalu A, Palmer C, Gasparini P, Pirastu M, Jukema JW, Probst-Hensch NM, Kronenberg F, Toniolo D, Gudnason V, Shuldiner AR, Coresh J, Schmidt R, Ferrucci L, Siscovick DS, Duijn CM van, Borecki IB, Kardia SL, Liu Y, Curhan GC, Rudan I, Gyllensten U, Wilson JF, Franke A, Pramstaller PP, Rettig R, Prokopenko I, Witteman J, Hayward C, Ridker PM, Parsa A, Bochud M, Heid IM, Kao WH, Fox CS, Kottgen A (2012) Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function. Hum Mol Genet 21:5329–5343

  • Chau BN, Xin C, Hartner J, Ren S, Castano AP, Linn G, Li J, Tran PT, Kaimal V, Huang X, Chang AN, Li S, Kalra A, Grafals M, Portilla D, MacKenna DA, Orkin SH, Duffield JS (2012) MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci Transl Med 4:121ra118

    Article  CAS  Google Scholar 

  • Chen H, Li J, Jiao L, Petersen RB, Li J, Peng A, Zheng L, Huang K (2014) Apelin inhibits the development of diabetic nephropathy by regulating histone acetylation in Akita mouse. J Physiol (Lond) 592:505–521

    Article  CAS  Google Scholar 

  • Chen H, Wan D, Wang L, Peng A, Xiao H, Petersen RB, Liu C, Zheng L, Huang K (2015) Apelin protects against acute renal injury by inhibiting TGF-beta1. Biochim Biophys Acta 1852:1278–1287

    Article  CAS  PubMed  Google Scholar 

  • Chen HY, Zhong X, Huang XR, Meng XM, You Y, Chung AC, Lan HY (2014) MicroRNA-29b inhibits diabetic nephropathy in db/db mice. Mol Ther 22:842–853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen J, Zhang X, Zhang H, Lin J, Zhang C, Wu Q, Ding X (2013) Elevated Klotho promoter methylation is associated with severity of chronic kidney disease. PLoS One 8:e79856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Guo Y, Zeng W, Huang L, Pang Q, Nie L, Mu J, Yuan F, Feng B (2014) ER stress triggers MCP-1 expression through SET7/9-induced histone methylation in the kidneys of db/db mice. Am J Physiol Renal Physiol 306:F916–F925

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Bellew C, Yao X, Stefkova J, Dipp S, Saifudeen Z, Bachvarov D, El-Dahr SS (2011) Histone deacetylase (HDAC) activity is critical for embryonic kidney gene expression, growth, and differentiation. J Biol Chem 286:32775–32789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Yao X, Li Y, Saifudeen Z, Bachvarov D, El-Dahr SS (2015) Histone deacetylase 1 and 2 regulate Wnt and p53 pathways in the ureteric bud epithelium. Development 142:1180–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YQ, Wang XX, Yao XM, Zhang DL, Yang XF, Tian SF, Wang NS (2012) Abated microRNA-195 expression protected mesangial cells from apoptosis in early diabetic renal injury in mice. J Nephrol 25:566–576

    Article  CAS  PubMed  Google Scholar 

  • Chiu J, Khan ZA, Farhangkhoee H, Chakrabarti S (2009) Curcumin prevents diabetes-associated abnormalities in the kidneys by inhibiting p300 and nuclear factor-kappaB. Nutrition 25:964–972

    Article  CAS  PubMed  Google Scholar 

  • Cianciolo Cosentino C, Skrypnyk NI, Brilli LL, Chiba T, Novitskaya T, Woods C, West J, Korotchenko VN, McDermott L, Day BW, Davidson AJ, Harris RC, Caestecker MP de, Hukriede NA (2013) Histone deacetylase inhibitor enhances recovery after AKI. J Am Soc Nephrol 24:943–953

  • Coffman TM (2011) Under pressure: the search for the essential mechanisms of hypertension. Nat Med 17:1402–1409

    Article  CAS  PubMed  Google Scholar 

  • Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150:12–27

    Article  CAS  PubMed  Google Scholar 

  • Daxinger L, Whitelaw E (2012) Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat Rev Genet 13:153–162

    Article  CAS  PubMed  Google Scholar 

  • Deshpande SD, Putta S, Wang M, Lai JY, Bitzer M, Nelson RG, Lanting LL, Kato M, Natarajan R (2013) Transforming growth factor-beta-induced cross talk between p53 and a microRNA in the pathogenesis of diabetic nephropathy. Diabetes 62:3151–3162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doi S, Zou Y, Togao O, Pastor JV, John GB, Wang L, Shiizaki K, Gotschall R, Schiavi S, Yorioka N, Takahashi M, Boothman DA, Kuro-o M (2011) Klotho inhibits transforming growth factor-beta1 (TGF-beta1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J Biol Chem 286:8655–8665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong W, Jia Y, Liu X, Zhang H, Li T, Huang W, Chen X, Wang F, Sun W, Wu H (2017) Sodium butyrate activates NRF2 to ameliorate diabetic nephropathy possibly via inhibition of HDAC. J Endocrinol 232:71–83

    Article  CAS  PubMed  Google Scholar 

  • Dong Z (2013) Acetylation of Ets-1 is the key to chromatin remodeling for miR-192 expression. Sci Signal 6:pe21

    Article  PubMed  Google Scholar 

  • Downing C, Johnson TE, Larson C, Leakey TI, Siegfried RN, Rafferty TM, Cooney CA (2011) Subtle decreases in DNA methylation and gene expression at the mouse Igf2 locus following prenatal alcohol exposure: effects of a methyl-supplemented diet. Alcohol 45:65–71

    Article  CAS  PubMed  Google Scholar 

  • Dressler GR, Patel SR (2015) Epigenetics in kidney development and renal disease. Transl Res 165:166–176

    Article  CAS  PubMed  Google Scholar 

  • Efstratiadis G, Divani M, Katsioulis E, Vergoulas G (2009) Renal fibrosis. Hippokratia 13:224–229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrlich M, Gama-Sosa MA, Huang LH, Midgett RM, Kuo KC, McCune RA, Gehrke C (1982) Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res 10:2709–2721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eknoyan G, Lameire N, Barsoum R, Eckardt KU, Levin A, Levin N, Locatelli F, MacLeod A, Vanholder R, Walker R, Wang H (2004) The burden of kidney disease: improving global outcomes. Kidney Int 66:1310–1314

    Article  PubMed  Google Scholar 

  • Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A, Schoch R, Gattermann N, Sanz G, List A, Gore SD, Seymour JF, Bennett JM, Byrd J, Backstrom J, Zimmerman L, McKenzie D, Beach C, Silverman LR, International Vidaza High-Risk MDSSSG (2009) Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol 10:223–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson-Smith AC, Reik W, Surani MA (1990) Genomic imprinting and cancer. Cancer Surv 9:487–503

    CAS  PubMed  Google Scholar 

  • Francis NJ, Kingston RE, Woodcock CL (2004) Chromatin compaction by a polycomb group protein complex. Science 306:1574–1577

    Article  CAS  PubMed  Google Scholar 

  • Garro AJ, McBeth DL, Lima V, Lieber CS (1991) Ethanol consumption inhibits fetal DNA methylation in mice: implications for the fetal alcohol syndrome. Alcohol Clin Exp Res 15:395–398

    Article  CAS  PubMed  Google Scholar 

  • Gautier JF, Porcher R, Abi Khalil C, Bellili-Munoz N, Fetita LS, Travert F, Choukem SP, Riveline JP, Hadjadj S, Larger E, Boudou P, Blondeau B, Roussel R, Ferre P, Ravussin E, Rouzet F, Marre M (2015) Kidney dysfunction in adult offspring exposed in utero to type 1 diabetes is associated with alterations in genome-wide DNA methylation. PLoS One 10:e0134654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gilbert RE, Huang Q, Thai K, Advani SL, Lee K, Yuen DA, Connelly KA, Advani A (2011) Histone deacetylase inhibition attenuates diabetes-associated kidney growth: potential role for epigenetic modification of the epidermal growth factor receptor. Kidney Int 79:1312–1321

    Article  CAS  PubMed  Google Scholar 

  • Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128:635–638

    Article  CAS  PubMed  Google Scholar 

  • Gu T, Falhammar H, Gu HF, Brismar K (2014) Epigenetic analyses of the insulin-like growth factor binding protein 1 gene in type 1 diabetes and diabetic nephropathy. Clin Epigenetics 6:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hasegawa K, Wakino S, Simic P, Sakamaki Y, Minakuchi H, Fujimura K, Hosoya K, Komatsu M, Kaneko Y, Kanda T, Kubota E, Tokuyama H, Hayashi K, Guarente L, Itoh H (2013) Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat Med 19:1496–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauser MT, Aufsatz W, Jonak C, Luschnig C (2011) Transgenerational epigenetic inheritance in plants. Biochim Biophys Acta 1809:459–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi K, Sasamura H, Nakamura M, Azegami T, Oguchi H, Sakamaki Y, Itoh H (2014) KLF4-dependent epigenetic remodeling modulates podocyte phenotypes and attenuates proteinuria. J Clin Invest 124:2523–2537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He F, Peng F, Xia X, Zhao C, Luo Q, Guan W, Li Z, Yu X, Huang F (2014) MiR-135a promotes renal fibrosis in diabetic nephropathy by regulating TRPC1. Diabetologia 57:1726–1736

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Munoz I, Lund AH, Stoop P van der, Boutsma E, Muijrers I, Verhoeven E, Nusinow DA, Panning B, Marahrens Y, Lohuizen M van (2005) Stable X chromosome inactivation involves the PRC1 Polycomb complex and requires histone MACROH2A1 and the CULLIN3/SPOP ubiquitin E3 ligase. Proc Natl Acad Sci U S A 102:7635–7640

  • Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14:R115

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsieh CL (1999) In vivo activity of murine de novo methyltransferases, Dnmt3a and Dnmt3b. Mol Cell Biol 19:8211–8218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsing CH, Lin CF, So E, Sun DP, Chen TC, Li CF, Yeh CH (2012) alpha2-Adrenoceptor agonist dexmedetomidine protects septic acute kidney injury through increasing BMP-7 and inhibiting HDAC2 and HDAC5. Am J Physiol Renal Physiol 303:F1443–F1453

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Wan D, Li J, Chen H, Huang K, Zheng L (2015) Histone acetyltransferase PCAF regulates inflammatory molecules in the development of renal injury. Epigenetics 10:62–72

    Article  PubMed  PubMed Central  Google Scholar 

  • Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466:1129–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  CAS  PubMed  Google Scholar 

  • Jia Y, Guan M, Zheng Z, Zhang Q, Tang C, Xu W, Xiao Z, Wang L, Xue Y (2016) miRNAs in urine extracellular vesicles as predictors of early-stage diabetic nephropathy. J Diabetes Res 2016:7932765

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492

    Article  CAS  PubMed  Google Scholar 

  • Joubert BR, Haberg SE, Nilsen RM, Wang X, Vollset SE, Murphy SK, Huang Z, Hoyo C, Midttun O, Cupul-Uicab LA, Ueland PM, Wu MC, Nystad W, Bell DA, Peddada SD, London SJ (2012) 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect 120:1425–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaelin WG Jr, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30:393–402

    Article  CAS  PubMed  Google Scholar 

  • Kalluri R, Neilson EG (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 112:1776–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang WL, Xu GS (2016) Atrasentan increased the expression of klotho by mediating miR-199b-5p and prevented renal tubular injury in diabetic nephropathy. Sci Rep 6:19979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kantharidis P, Wang B, Carew RM, Lan HY (2011) Diabetes complications: the microRNA perspective. Diabetes 60:1832–1837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanwar YS, Nayak B, Lin S, Akagi S, Xie P, Wada J, Chugh SS, Danesh FR (2005) Hyperglycemia: its imminent effects on mammalian nephrogenesis. Pediatr Nephrol 20:858–866

    Article  PubMed  Google Scholar 

  • Kanwar YS, Sun L, Xie P, Liu FY, Chen S (2011) A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu Rev Pathol 6:395–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato M (2013) TGF-beta-induced signaling circuit loops mediated by microRNAs as new therapeutic targets for renal fibrosis? Kidney Int 84:1067–1069

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Natarajan R (2012) MicroRNA circuits in transforming growth factor-beta actions and diabetic nephropathy. Semin Nephrol 32:253–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato M, Natarajan R (2014) Diabetic nephropathy—emerging epigenetic mechanisms. Nat Rev Nephrol 10:517–530

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Zhang J, Wang M, Lanting L, Yuan H, Rossi JJ, Natarajan R (2007) MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci U S A 104:3432–3437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato M, Dang V, Wang M, Park JT, Deshpande S, Kadam S, Mardiros A, Zhan Y, Oettgen P, Putta S, Yuan H, Lanting L, Natarajan R (2013a) TGF-beta induces acetylation of chromatin and of Ets-1 to alleviate repression of miR-192 in diabetic nephropathy. Sci Signal 6:ra43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kato M, Castro NE, Natarajan R (2013b) MicroRNAs: potential mediators and biomarkers of diabetic complications. Free Radic Biol Med 64:85–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller C, Kroening S, Zuehlke J, Kunath F, Krueger B, Goppelt-Struebe M (2012) Distinct mesenchymal alterations in N-cadherin and E-cadherin positive primary renal epithelial cells. PLoS One 7:e43584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan S, Jena G (2014) Sodium butyrate, a HDAC inhibitor ameliorates eNOS, iNOS and TGF-beta1-induced fibrogenesis, apoptosis and DNA damage in the kidney of juvenile diabetic rats. Food Chem Toxicol 73:127–139

    Article  CAS  PubMed  Google Scholar 

  • Khan S, Jena G, Tikoo K (2015a) Sodium valproate ameliorates diabetes-induced fibrosis and renal damage by the inhibition of histone deacetylases in diabetic rat. Exp Mol Pathol 98:230–239

    Article  CAS  PubMed  Google Scholar 

  • Khan S, Jena G, Tikoo K, Kumar V (2015b) Valproate attenuates the proteinuria, podocyte and renal injury by facilitating autophagy and inactivation of NF-kappaB/iNOS signaling in diabetic rat. Biochimie 110:1–16

    Article  CAS  PubMed  Google Scholar 

  • Kirmizis A, Bartley SM, Kuzmichev A, Margueron R, Reinberg D, Green R, Farnham PJ (2004) Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev 18:1592–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ko YA, Mohtat D, Suzuki M, Park AS, Izquierdo MC, Han SY, Kang HM, Si H, Hostetter T, Pullman JM, Fazzari M, Verma A, Zheng D, Greally JM, Susztak K (2013) Cytosine methylation changes in enhancer regions of core pro-fibrotic genes characterize kidney fibrosis development. Genome Biol 14:R108

    Article  PubMed  PubMed Central  Google Scholar 

  • Koga K, Yokoi H, Mori K, Kasahara M, Kuwabara T, Imamaki H, Ishii A, Mori KP, Kato Y, Ohno S, Toda N, Saleem MA, Sugawara A, Nakao K, Yanagita M, Mukoyama M (2015) MicroRNA-26a inhibits TGF-beta-induced extracellular matrix protein expression in podocytes by targeting CTGF and is downregulated in diabetic nephropathy. Diabetologia 58:2169–2180

    Article  CAS  PubMed  Google Scholar 

  • Kone BC (2013) Epigenetics and the control of the collecting duct epithelial sodium channel. Semin Nephrol 33:383–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosanam H, Thai K, Zhang Y, Advani A, Connelly KA, Diamandis EP, Gilbert RE (2014) Diabetes induces lysine acetylation of intermediary metabolism enzymes in the kidney. Diabetes 63:2432–2439

    Article  PubMed  Google Scholar 

  • Kottgen A, Pattaro C, Boger CA, Fuchsberger C, Olden M, Glazer NL, Parsa A, Gao X, Yang Q, Smith AV, O’Connell JR, Li M, Schmidt H, Tanaka T, Isaacs A, Ketkar S, Hwang SJ, Johnson AD, Dehghan A, Teumer A, Pare G, Atkinson EJ, Zeller T, Lohman K, Cornelis MC, Probst-Hensch NM, Kronenberg F, Tonjes A, Hayward C, Aspelund T, Eiriksdottir G, Launer LJ, Harris TB, Rampersaud E, Mitchell BD, Arking DE, Boerwinkle E, Struchalin M, Cavalieri M, Singleton A, Giallauria F, Metter J, Boer IH de, Haritunians T, Lumley T, Siscovick D, Psaty BM, Zillikens MC, Oostra BA, Feitosa M, Province M, Andrade M de, Turner ST, Schillert A, Ziegler A, Wild PS, Schnabel RB, Wilde S, Munzel TF, Leak TS, Illig T, Klopp N, Meisinger C, Wichmann HE, Koenig W, Zgaga L, Zemunik T, Kolcic I, Minelli C, Hu FB, Johansson A, Igl W, Zaboli G, Wild SH, Wright AF, Campbell H, Ellinghaus D, Schreiber S, Aulchenko YS, Felix JF, Rivadeneira F, Uitterlinden AG, Hofman A, Imboden M, Nitsch D, Brandstatter A, Kollerits B, Kedenko L, Magi R, Stumvoll M, Kovacs P, Boban M, Campbell S, Endlich K, Volzke H, Kroemer HK, Nauck M, Volker U, Polasek O, Vitart V, Badola S, Parker AN, Ridker PM, Kardia SL, Blankenberg S, Liu Y, Curhan GC, Franke A, Rochat T, Paulweber B, Prokopenko I, Wang W, Gudnason V, Shuldiner AR, Coresh J, Schmidt R, Ferrucci L, Shlipak MG, Duijn CM van, Borecki I, Kramer BK, Rudan I, Gyllensten U, Wilson JF, Witteman JC, Pramstaller PP, Rettig R, Hastie N, Chasman DI, Kao WH, Heid IM, Fox CS (2010) New loci associated with kidney function and chronic kidney disease. Nat Genet 42:376–384

  • Krieg AJ, Rankin EB, Chan D, Razorenova O, Fernandez S, Giaccia AJ (2010) Regulation of the histone demethylase JMJD1A by hypoxia-inducible factor 1 alpha enhances hypoxic gene expression and tumor growth. Mol Cell Biol 30:344–353

    Article  CAS  PubMed  Google Scholar 

  • Krupa A, Jenkins R, Luo DD, Lewis A, Phillips A, Fraser D (2010) Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J Am Soc Nephrol 21:438–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kume S, Kitada M, Kanasaki K, Maegawa H, Koya D (2013) Anti-aging molecule, Sirt1: a novel therapeutic target for diabetic nephropathy. Arch Pharm Res 36:230–236

    Article  CAS  PubMed  Google Scholar 

  • Kuzmichev A, Jenuwein T, Tempst P, Reinberg D (2004) Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol Cell 14:183–193

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann Y, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, Bastide M de la, Dedhia N, Blocker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowki J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, Jong P de, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ, Szustakowki J, International Human Genome Sequencing C (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

  • Lee HA, Cho HM, Lee DY, Kim KC, Han HS, Kim IK (2012) Tissue-specific upregulation of angiotensin-converting enzyme 1 in spontaneously hypertensive rats through histone code modifications. Hypertension 59:621–626

    Article  CAS  PubMed  Google Scholar 

  • Lee HW, Khan SQ, Khaliqdina S, Altintas MM, Grahammer F, Zhao JL, Koh K, Tardi NJ, Faridi MH, Geraghty T, Cimbaluk DJ, Susztak K, Moita LF, Baltimore D, Tharaux PL, Huber TB, Kretzler M, Bitzer M, Reiser J, Gupta V (2016) Absence of miR-146a in podocytes increases risk of diabetic glomerulopathy via upregulation of erbb4 and notch-1. J Biol Chem 292:732-747

  • Lefevre GM, Patel SR, Kim D, Tessarollo L, Dressler GR (2010) Altering a histone H3K4 methylation pathway in glomerular podocytes promotes a chronic disease phenotype. PLoS Genet 6:e1001142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li C, Cai F, Yang Y, Zhao X, Wang C, Li J, Jia Y, Tang J, Liu Q (2010) Tetrahydroxystilbene glucoside ameliorates diabetic nephropathy in rats: involvement of SIRT1 and TGF-beta1 pathway. Eur J Pharmacol 649:382–389

    Article  CAS  PubMed  Google Scholar 

  • Li D, Lu Z, Jia J, Zheng Z, Lin S (2013) Curcumin ameliorates podocytic adhesive capacity damage under mechanical stress by inhibiting miR-124 expression. Kidney Blood Press Res 38:61–71

    Article  CAS  PubMed  Google Scholar 

  • Li E, Beard C, Jaenisch R (1993) Role for DNA methylation in genomic imprinting. Nature 366:362–365

    Article  CAS  PubMed  Google Scholar 

  • Liang M, Cowley AW Jr, Mattson DL, Kotchen TA, Liu Y (2013) Epigenomics of hypertension. Semin Nephrol 33:392–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CL, Lee PH, Hsu YC, Lei CC, Ko JY, Chuang PC, Huang YT, Wang SY, Wu SL, Chen YS, Chiang WC, Reiser J, Wang FS (2014) MicroRNA-29a promotion of nephrin acetylation ameliorates hyperglycemia-induced podocyte dysfunction. J Am Soc Nephrol 25:1698–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Zong M, Wen X, Li X, Wang J, Wang Y, Jiang W, Li X, Guo Z, Qi H (2016) Silencing of histone deacetylase 9 expression in podocytes attenuates kidney injury in diabetic nephropathy. Sci Rep 6:33676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu N, He S, Ma L, Ponnusamy M, Tang J, Tolbert E, Bayliss G, Zhao TC, Yan H, Zhuang S (2013) Blocking the class I histone deacetylase ameliorates renal fibrosis and inhibits renal fibroblast activation via modulating TGF-beta and EGFR signaling. PLoS One 8:e54001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Fan LX, Zhou X, Sweeney WE Jr, Avner ED, Li X (2012) HDAC6 regulates epidermal growth factor receptor (EGFR) endocytic trafficking and degradation in renal epithelial cells. PLoS One 7:e49418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XD, Zhang LY, Zhu TC, Zhang RF, Wang SL, Bao Y (2015) Overexpression of miR-34c inhibits high glucose-induced apoptosis in podocytes by targeting Notch signaling pathways. Int J Clin Exp Pathol 8:4525–4534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Long J, Wang Y, Wang W, Chang BH, Danesh FR (2011) MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy. J Biol Chem 286:11837–11848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv C, Zhou YH, Wu C, Shao Y, Lu CL, Wang QY (2015) The changes in miR-130b levels in human serum and the correlation with the severity of diabetic nephropathy. Diabetes Metab Res Rev 31:717–724

    Article  CAS  PubMed  Google Scholar 

  • MacLennan NK, James SJ, Melnyk S, Piroozi A, Jernigan S, Hsu JL, Janke SM, Pham TD, Lane RH (2004) Uteroplacental insufficiency alters DNA methylation, one-carbon metabolism, and histone acetylation in IUGR rats. Physiol Genomics 18:43–50

    Article  PubMed  Google Scholar 

  • Maghbooli Z, Larijani B, Emamgholipour S, Amini M, Keshtkar A, Pasalar P (2014) Aberrant DNA methylation patterns in diabetic nephropathy. J Diabetes Metab Disord 13:69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marumo T, Hishikawa K, Yoshikawa M, Fujita T (2008) Epigenetic regulation of BMP7 in the regenerative response to ischemia. J Am Soc Nephrol 19:1311–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marumo T, Hishikawa K, Yoshikawa M, Hirahashi J, Kawachi S, Fujita T (2010) Histone deacetylase modulates the proinflammatory and -fibrotic changes in tubulointerstitial injury. Am J Physiol Renal Physiol 298:F133–F141

    Article  CAS  PubMed  Google Scholar 

  • Matsuda S, Ichigotani Y, Okuda T, Irimura T, Nakatsugawa S, Hamaguchi M (2000) Molecular cloning and characterization of a novel human gene (HERNA) which encodes a putative RNA-helicase. Biochim Biophys Acta 1490:163–169

    Article  CAS  PubMed  Google Scholar 

  • McCaughan JA, McKnight AJ, Courtney AE, Maxwell AP (2012) Epigenetics: time to translate into transplantation. Transplantation 94:1–7

    Article  CAS  PubMed  Google Scholar 

  • McClelland AD, Herman-Edelstein M, Komers R, Jha JC, Winbanks CE, Hagiwara S, Gregorevic P, Kantharidis P, Cooper ME (2015) miR-21 promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7. Clin Sci (Lond) 129:1237–1249

    Article  CAS  Google Scholar 

  • McKnight AJ, McKay GJ, Maxwell AP (2014) Genetic and epigenetic risk factors for diabetic kidney disease. Adv Chronic Kidney Dis 21:287–296

    Article  PubMed  Google Scholar 

  • Mehta A, Hussain K (2003) Transient hyperinsulinism associated with macrosomia, hypertrophic obstructive cardiomyopathy, hepatomegaly, and nephromegaly. Arch Dis Child 88:822–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendenhall EM, Koche RP, Truong T, Zhou VW, Issac B, Chi AS, Ku M, Bernstein BE (2010) GC-rich sequence elements recruit PRC2 in mammalian ES cells. PLoS Genet 6:e1001244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mercer TR, Mattick JS (2013) Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 20:300–307

    Article  CAS  PubMed  Google Scholar 

  • Michels KB, Harris HR, Barault L (2011) Birthweight, maternal weight trajectories and global DNA methylation of LINE-1 repetitive elements. PLoS One 6:e25254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mimura I, Nangaku M (2010) The suffocating kidney: tubulointerstitial hypoxia in end-stage renal disease. Nat Rev Nephrol 6:667–678

    Article  CAS  PubMed  Google Scholar 

  • Mimura I, Nangaku M, Kanki Y, Tsutsumi S, Inoue T, Kohro T, Yamamoto S, Fujita T, Shimamura T, Suehiro J, Taguchi A, Kobayashi M, Tanimura K, Inagaki T, Tanaka T, Hamakubo T, Sakai J, Aburatani H, Kodama T, Wada Y (2012) Dynamic change of chromatin conformation in response to hypoxia enhances the expression of GLUT3 (SLC2A3) by cooperative interaction of hypoxia-inducible factor 1 and KDM3A. Mol Cell Biol 32:3018–3032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mimura I, Tanaka T, Nangaku M (2013) Novel therapeutic strategy with hypoxia-inducible factors via reversible epigenetic regulation mechanisms in progressive tubulointerstitial fibrosis. Semin Nephrol 33:375–382

    Article  CAS  PubMed  Google Scholar 

  • Moore T, Haig D (1991) Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet 7:45–49

    Article  CAS  PubMed  Google Scholar 

  • Muratsu-Ikeda S, Nangaku M, Ikeda Y, Tanaka T, Wada T, Inagi R (2012) Downregulation of miR-205 modulates cell susceptibility to oxidative and endoplasmic reticulum stresses in renal tubular cells. PLoS One 7:e41462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muta K, Obata Y, Oka S, Abe S, Minami K, Kitamura M, Endo D, Koji T, Nishino T (2016) Curcumin ameliorates nephrosclerosis via suppression of histone acetylation independent of hypertension. Nephrol Dial Transplant 31:1615–1623

    Article  PubMed  Google Scholar 

  • Nagalakshmi VK, Ren Q, Pugh MM, Valerius MT, McMahon AP, Yu J (2011) Dicer regulates the development of nephrogenic and ureteric compartments in the mammalian kidney. Kidney Int 79:317–330

    Article  CAS  PubMed  Google Scholar 

  • Nangaku M (2006) Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol 17:17–25

    Article  CAS  PubMed  Google Scholar 

  • Napoles M de, Mermoud JE, Wakao R, Tang YA, Endoh M, Appanah R, Nesterova TB, Silva J, Otte AP, Vidal M, Koseki H, Brockdorff N (2004) Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev Cell 7:663–676

  • Noh H, Oh EY, Seo JY, Yu MR, Kim YO, Ha H, Lee HB (2009) Histone deacetylase-2 is a key regulator of diabetes- and transforming growth factor-beta1-induced renal injury. Am J Physiol Renal Physiol 297:F729–F739

    Article  CAS  PubMed  Google Scholar 

  • Okano M, Xie S, Li E (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 19:219–220

    Article  CAS  PubMed  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  CAS  PubMed  Google Scholar 

  • Pang M, Kothapally J, Mao H, Tolbert E, Ponnusamy M, Chin YE, Zhuang S (2009) Inhibition of histone deacetylase activity attenuates renal fibroblast activation and interstitial fibrosis in obstructive nephropathy. Am J Physiol Renal Physiol 297:F996–F1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JT, Kato M, Yuan H, Castro N, Lanting L, Wang M, Natarajan R (2013) FOG2 protein down-regulation by transforming growth factor-beta1-induced microRNA-200b/c leads to Akt kinase activation and glomerular mesangial hypertrophy related to diabetic nephropathy. J Biol Chem 288:22469–22480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel SR, Kim D, Levitan I, Dressler GR (2007) The BRCT-domain containing protein PTIP links PAX2 to a histone H3, lysine 4 methyltransferase complex. Dev Cell 13:580–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel SR, Bhumbra SS, Paknikar RS, Dressler GR (2012) Epigenetic mechanisms of Groucho/Grg/TLE mediated transcriptional repression. Mol Cell 45:185–195

    Article  CAS  PubMed  Google Scholar 

  • Patel V, Noureddine L (2012) MicroRNAs and fibrosis. Curr Opin Nephrol Hypertens 21:410–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng R, Liu H, Peng H, Zhou J, Zha H, Chen X, Zhang L, Sun Y, Yin P, Wen L, Wu T, Zhang Z (2015) Promoter hypermethylation of let-7a-3 is relevant to its down-expression in diabetic nephropathy by targeting UHRF1. Gene 570:57–63

    Article  CAS  PubMed  Google Scholar 

  • Pham TD, MacLennan NK, Chiu CT, Laksana GS, Hsu JL, Lane RH (2003) Uteroplacental insufficiency increases apoptosis and alters p53 gene methylation in the full-term IUGR rat kidney. Am J Physiol Regul Integr Comp Physiol 285:R962–R970

    Article  CAS  PubMed  Google Scholar 

  • Pradhan S, Bacolla A, Wells RD, Roberts RJ (1999) Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J Biol Chem 274:33002–33010

    Article  CAS  PubMed  Google Scholar 

  • Putta S, Lanting L, Sun G, Lawson G, Kato M, Natarajan R (2012) Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. J Am Soc Nephrol 23:458–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi W, Mu J, Luo ZF, Zeng W, Guo YH, Pang Q, Ye ZL, Liu L, Yuan FH, Feng B (2011) Attenuation of diabetic nephropathy in diabetes rats induced by streptozotocin by regulating the endoplasmic reticulum stress inflammatory response. Metabolism 60:594–603

    Article  CAS  PubMed  Google Scholar 

  • Qin W, Chung AC, Huang XR, Meng XM, Hui DS, Yu CM, Sung JJ, Lan HY (2011) TGF-beta/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J Am Soc Nephrol 22:1462–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radford EJ, Ito M, Shi H, Corish JA, Yamazawa K, Isganaitis E, Seisenberger S, Hore TA, Reik W, Erkek S, Peters AH, Patti ME, Ferguson-Smith AC (2014) In utero effects. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 345:1255903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rakyan VK, Blewitt ME, Druker R, Preis JI, Whitelaw E (2002) Metastable epialleles in mammals. Trends Genet 18:348–351

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran K, Saikumar J, Bijol V, Koyner JL, Qian J, Betensky RA, Waikar SS, Vaidya VS (2013) Human miRNome profiling identifies microRNAs differentially present in the urine after kidney injury. Clin Chem 59:1742–1752

    Article  CAS  PubMed  Google Scholar 

  • Ranghini EJ, Dressler GR (2015) Evidence for intermediate mesoderm and kidney progenitor cell specification by Pax2 and PTIP dependent mechanisms. Dev Biol 399:296–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy MA, Natarajan R (2011) Epigenetics in diabetic kidney disease. J Am Soc Nephrol 22:2182–2185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy MA, Natarajan R (2015) Recent developments in epigenetics of acute and chronic kidney diseases. Kidney Int 88:250–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy MA, Sumanth P, Lanting L, Yuan H, Wang M, Mar D, Alpers CE, Bomsztyk K, Natarajan R (2014) Losartan reverses permissive epigenetic changes in renal glomeruli of diabetic db/db mice. Kidney Int 85:362–373

    Article  CAS  PubMed  Google Scholar 

  • Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093

    Article  CAS  PubMed  Google Scholar 

  • Riising EM, Comet I, Leblanc B, Wu X, Johansen JV, Helin K (2014) Gene silencing triggers polycomb repressive complex 2 recruitment to CpG islands genome wide. Mol Cell 55:347–360

    Article  CAS  PubMed  Google Scholar 

  • Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudnicki M, Perco P, Haene DB, Leierer J, Heinzel A, Muhlberger I, Schweibert N, Sunzenauer J, Regele H, Kronbichler A, Mestdagh P, Vandesompele J, Mayer B, Mayer G (2016) Renal microRNA- and RNA-profiles in progressive chronic kidney disease. Eur J Clin Invest 46:213–226

    Article  CAS  PubMed  Google Scholar 

  • Sapienza C, Lee J, Powell J, Erinle O, Yafai F, Reichert J, Siraj ES, Madaio M (2011) DNA methylation profiling identifies epigenetic differences between diabetes patients with ESRD and diabetes patients without nephropathy. Epigenetics 6:20–28

    Article  CAS  PubMed  Google Scholar 

  • Sato F, Tsuchiya S, Meltzer SJ, Shimizu K (2011) MicroRNAs and epigenetics. FEBS J 278:1598–1609

    Article  CAS  PubMed  Google Scholar 

  • Sayyed SG, Gaikwad AB, Lichtnekert J, Kulkarni O, Eulberg D, Klussmann S, Tikoo K, Anders HJ (2010) Progressive glomerulosclerosis in type 2 diabetes is associated with renal histone H3K9 and H3K23 acetylation, H3K4 dimethylation and phosphorylation at serine 10. Nephrol Dial Transplant 25:1811–1817

    Article  CAS  PubMed  Google Scholar 

  • Schena FP, Serino G, Sallustio F (2014) MicroRNAs in kidney diseases: new promising biomarkers for diagnosis and monitoring. Nephrol Dial Transplant 29:755–763

    Article  CAS  PubMed  Google Scholar 

  • Shi S, Yu L, Chiu C, Sun Y, Chen J, Khitrov G, Merkenschlager M, Holzman LB, Zhang W, Mundel P, Bottinger EP (2008) Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis. J Am Soc Nephrol 19:2159–2169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shlyueva D, Stampfel G, Stark A (2014) Transcriptional enhancers: from properties to genome-wide predictions. Nat Rev Genet 15:272–286

    Article  CAS  PubMed  Google Scholar 

  • Siddiqi FS, Majumder S, Thai K, Abdalla M, Hu P, Advani SL, White KE, Bowskill BB, Guarna G, Dos Santos CC, Connelly KA, Advani A (2016) The histone methyltransferase enzyme enhancer of zeste homolog 2 protects against podocyte oxidative stress and renal injury in diabetes. J Am Soc Nephrol 27:2021–2034

    Article  PubMed  Google Scholar 

  • Siggens L, Ekwall K (2014) Epigenetics, chromatin and genome organization: recent advances from the ENCODE project. J Intern Med 276:201–214

    Article  CAS  PubMed  Google Scholar 

  • Smyth LJ, McKay GJ, Maxwell AP, McKnight AJ (2014) DNA hypermethylation and DNA hypomethylation is present at different loci in chronic kidney disease. Epigenetics 9:366–376

    Article  CAS  PubMed  Google Scholar 

  • Sun CY, Chang SC, Wu MS (2012) Suppression of Klotho expression by protein-bound uremic toxins is associated with increased DNA methyltransferase expression and DNA hypermethylation. Kidney Int 81:640–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun G, Reddy MA, Yuan H, Lanting L, Kato M, Natarajan R (2010) Epigenetic histone methylation modulates fibrotic gene expression. J Am Soc Nephrol 21:2069–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun XY, Qin HJ, Zhang Z, Xu Y, Yang XC, Zhao DM, Li XN, Sun LK (2016) Valproate attenuates diabetic nephropathy through inhibition of endoplasmic reticulum stressinduced apoptosis. Mol Med Rep 13:661–668

    CAS  PubMed  Google Scholar 

  • Sun Y, Peng R, Peng H, Liu H, Wen L, Wu T, Yi H, Li A, Zhang Z (2016) miR-451 suppresses the NF-kappaB-mediated proinflammatory molecules expression through inhibiting LMP7 in diabetic nephropathy. Mol Cell Endocrinol 433:75–86

    Article  CAS  PubMed  Google Scholar 

  • Swan EJ, Maxwell AP, McKnight AJ (2015) Distinct methylation patterns in genes that affect mitochondrial function are associated with kidney disease in blood-derived DNA from individuals with type 1 diabetes. Diabet Med 32:1110–1115

    Article  CAS  PubMed  Google Scholar 

  • Szemes M, Dallosso AR, Melegh Z, Curry T, Li Y, Rivers C, Uney J, Magdefrau AS, Schwiderski K, Park JH, Brown KW, Shandilya J, Roberts SG, Malik K (2013) Control of epigenetic states by WT1 via regulation of de novo DNA methyltransferase 3A. Hum Mol Genet 22:74–83

    Article  CAS  PubMed  Google Scholar 

  • Taal HR, Geelhoed JJ, Steegers EA, Hofman A, Moll HA, Lequin M, Heijden AJ van der, Jaddoe VW (2011) Maternal smoking during pregnancy and kidney volume in the offspring: the Generation R Study. Pediatr Nephrol 26:1275–1283

  • Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tampe B, Tampe D, Muller CA, Sugimoto H, LeBleu V, Xu X, Muller GA, Zeisberg EM, Kalluri R, Zeisberg M (2014) Tet3-mediated hydroxymethylation of epigenetically silenced genes contributes to bone morphogenic protein 7-induced reversal of kidney fibrosis. J Am Soc Nephrol 25:905–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tampe B, Tampe D, Zeisberg EM, Muller GA, Bechtel-Walz W, Koziolek M, Kalluri R, Zeisberg M (2015) Induction of Tet3-dependent epigenetic remodeling by low-dose hydralazine attenuates progression of chronic kidney disease. EBioMed 2:19–36

    Article  Google Scholar 

  • Tampe B, Steinle U, Tampe D, Carstens JL, Korsten P, Zeisberg EM, Muller GA, Kalluri R, Zeisberg M (2016) Low-dose hydralazine prevents fibrosis in a murine model of acute kidney injury-to-chronic kidney disease progression. Kidney Int 91:157–176

    Article  PubMed  CAS  Google Scholar 

  • Tampe D, Zeisberg M (2014) Potential approaches to reverse or repair renal fibrosis. Nat Rev Nephrol 10:226–237

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Kojima I, Ohse T, Ingelfinger JR, Adler S, Fujita T, Nangaku M (2005) Cobalt promotes angiogenesis via hypoxia-inducible factor and protects tubulointerstitium in the remnant kidney model. Lab Invest 85:1292–1307

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Kato H, Kojima I, Ohse T, Son D, Tawakami T, Yatagawa T, Inagi R, Fujita T, Nangaku M (2006) Hypoxia and expression of hypoxia-inducible factor in the aging kidney. J Gerontol A Biol Sci Med Sci 61:795–805

    Article  PubMed  Google Scholar 

  • Tao H, Huang C, Yang JJ, Ma TT, Bian EB, Zhang L, Lv XW, Jin Y, Li J (2011) MeCP2 controls the expression of RASAL1 in the hepatic fibrosis in rats. Toxicology 290:327–333

    Article  PubMed  CAS  Google Scholar 

  • Thatcher TH, Gorovsky MA (1994) Phylogenetic analysis of the core histones H2A, H2B, H3, and H4. Nucleic Acids Res 22:174–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toledo-Rodriguez M, Loyse N, Bourdon C, Arab S, Pausova Z (2012) Effect of prenatal exposure to nicotine on kidney glomerular mass and AT1R expression in genetically diverse strains of rats. Toxicol Lett 213:228–234

    Article  CAS  PubMed  Google Scholar 

  • Tran S, Chen YW, Chenier I, Chan JS, Quaggin S, Hebert MJ, Ingelfinger JR, Zhang SL (2008) Maternal diabetes modulates renal morphogenesis in offspring. J Am Soc Nephrol 19:943–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Beneden K, Geers C, Pauwels M, Mannaerts I, Verbeelen D, Grunsven LA van, Van den Branden C (2011) Valproic acid attenuates proteinuria and kidney injury. J Am Soc Nephrol 22:1863–1875

  • Van Beneden K, Geers C, Pauwels M, Mannaerts I, Wissing KM, Van den Branden C, Grunsven LA van (2013) Comparison of trichostatin A and valproic acid treatment regimens in a mouse model of kidney fibrosis. Toxicol Appl Pharmacol 271:276–284

  • VanderJagt TA, Neugebauer MH, Morgan M, Bowden DW, Shah VO (2015) Epigenetic profiles of pre-diabetes transitioning to type 2 diabetes and nephropathy. World J Diabetes 6:1113–1121

    Article  PubMed  PubMed Central  Google Scholar 

  • Vastenhouw NL, Schier AF (2012) Bivalent histone modifications in early embryogenesis. Curr Opin Cell Biol 24:374–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waddington CH (2012) The epigenotype. 1942. Int J Epidemiol 41:10–13

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Ricardo S (2014) Role of microRNA machinery in kidney fibrosis. Clin Exp Pharmacol Physiol 41:543–550

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Koh P, Winbanks C, Coughlan MT, McClelland A, Watson A, Jandeleit-Dahm K, Burns WC, Thomas MC, Cooper ME, Kantharidis P (2011) miR-200a Prevents renal fibrogenesis through repression of TGF-beta2 expression. Diabetes 60:280–287

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Gao Y, Ma M, Li M, Zou D, Yang J, Zhu Z, Zhao X (2013) Effect of miR-21 on renal fibrosis by regulating MMP-9 and TIMP1 in kk-ay diabetic nephropathy mice. Cell Biochem Biophys 67:537–546

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Duan L, Tian L, Liu J, Wang S, Gao Y, Yang J (2016) Serum miR-21 may be a Potential Diagnostic Biomarker for Diabetic Nephropathy. Exp Clin Endocrinol Diabetes 124:417–423

    PubMed  Google Scholar 

  • Wang JY, Gao YB, Zhang N, Zou DW, Wang P, Zhu ZY, Li JY, Zhou SN, Wang SC, Wang YY, Yang JK (2014a) miR-21 overexpression enhances TGF-beta1-induced epithelial-to-mesenchymal transition by target smad7 and aggravates renal damage in diabetic nephropathy. Mol Cell Endocrinol 392:163–172

    Article  CAS  PubMed  Google Scholar 

  • Wang JY, Gao YB, Zhang N, Zou DW, Xu LP, Zhu ZY, Li JY, Zhou SN, Cui FQ, Zeng XJ, Geng JG, Yang JK (2014b) Tongxinluo ameliorates renal structure and function by regulating miR-21-induced epithelial-to-mesenchymal transition in diabetic nephropathy. Am J Physiol Renal Physiol 306:F486–F495

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Wang Y, Minto AW, Wang J, Shi Q, Li X, Quigg RJ (2008) MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB J 22:4126–4135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Liu J, Zhen J, Zhang C, Wan Q, Liu G, Wei X, Zhang Y, Wang Z, Han H, Xu H, Bao C, Song Z, Zhang X, Li N, Yi F (2014c) Histone deacetylase 4 selectively contributes to podocyte injury in diabetic nephropathy. Kidney Int 86:712–725

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang Y, Luo M, Wu H, Kong L, Xin Y, Cui W, Zhao Y, Wang J, Liang G, Miao L, Cai L (2015) Novel curcumin analog C66 prevents diabetic nephropathy via JNK pathway with the involvement of p300/CBP-mediated histone acetylation. Biochim Biophys Acta 1852:34–46

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Yang CR, Wei YP, Zhao ZA, Hou Y, Schatten H, Sun QY (2014) Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc Natl Acad Sci U S A 111:1873–1878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilhide ME, Feller JD, Li B, Mohamed AZ, Becknell B, Jackson AR, McHugh KM, Ingraham SE (2016) Renal epithelial miR-205 expression correlates with disease severity in a mouse model of congenital obstructive nephropathy. Pediatr Res 80:602–609

    Article  CAS  PubMed  Google Scholar 

  • Williams KT, Garrow TA, Schalinske KL (2008) Type I diabetes leads to tissue-specific DNA hypomethylation in male rats. J Nutr 138:2064–2069

    Article  CAS  PubMed  Google Scholar 

  • Wing MR, Devaney JM, Joffe MM, Xie D, Feldman HI, Dominic EA, Guzman NJ, Ramezani A, Susztak K, Herman JG, Cope L, Harmon B, Kwabi-Addo B, Gordish-Dressman H, Go AS, He J, Lash JP, Kusek JW, Raj DS (2014) DNA methylation profile associated with rapid decline in kidney function: findings from the CRIC study. Nephrol Dial Transplant 29:864–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Tan X, Tampe B, Nyamsuren G, Liu X, Maier LS, Sossalla S, Kalluri R, Zeisberg M, Hasenfuss G, Zeisberg EM (2015) Epigenetic balance of aberrant Rasal1 promoter methylation and hydroxymethylation regulates cardiac fibrosis. Cardiovasc Res 105:279–291

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Wang Q, Li S (2016) MicroRNA-218 promotes high glucose-induced apoptosis in podocytes by targeting heme oxygenase-1. Biochem Biophys Res Commun 471:582–588

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV (2010) Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med 16:535–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang XH, Cao RF, Yu Y, Sui M, Zhang T, Xu JY, Wang XM (2016) A study on the correlation between MTHFR promoter methylation and diabetic nephropathy. Am J Transl Res 8:4960–4967

    PubMed  PubMed Central  Google Scholar 

  • Yoshikawa M, Hishikawa K, Marumo T, Fujita T (2007) Inhibition of histone deacetylase activity suppresses epithelial-to-mesenchymal transition induced by TGF-beta1 in human renal epithelial cells. J Am Soc Nephrol 18:58–65

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Kong Q, Kone BC (2013) Aldosterone reprograms promoter methylation to regulate alphaENaC transcription in the collecting duct. Am J Physiol Renal Physiol 305:F1006–F1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan H, Reddy MA, Sun G, Lanting L, Wang M, Kato M, Natarajan R (2013) Involvement of p300/CBP and epigenetic histone acetylation in TGF-beta1-mediated gene transcription in mesangial cells. Am J Physiol Renal Physiol 304:F601–F613

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Reddy MA, Deshpande S, Jia Y, Park JT, Lanting LL, Jin W, Kato M, Xu ZG, Das S, Natarajan R (2016) Epigenetic histone modifications involved in profibrotic gene regulation by 12/15-lipoxygenase and its oxidized lipid products in diabetic nephropathy. Antioxid Redox Signal 24:361–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zager RA, Johnson AC (2009) Renal ischemia-reperfusion injury upregulates histone-modifying enzyme systems and alters histone expression at proinflammatory/profibrotic genes. Am J Physiol Renal Physiol 296:F1032–F1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeisberg M, Kalluri R (2004) The role of epithelial-to-mesenchymal transition in renal fibrosis. J Mol Med (Berl) 82:175–181

    Article  Google Scholar 

  • Zeman FJ (1968) Effects of maternal protein restriction on the kidney of the newborn young of rats. J Nutr 94:111–116

    CAS  PubMed  Google Scholar 

  • Zhang D, Li S, Cruz P, Kone BC (2009a) Sirtuin 1 functionally and physically interacts with disruptor of telomeric silencing-1 to regulate alpha-ENaC transcription in collecting duct. J Biol Chem 284:20917–20926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Yu ZY, Cruz P, Kong Q, Li S, Kone BC (2009b) Epigenetics and the control of epithelial sodium channel expression in collecting duct. Kidney Int 75:260–267

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Cai X, Yi B, Huang J, Wang J, Sun J (2014) Correlation of CTGF gene promoter methylation with CTGF expression in type 2 diabetes mellitus with or without nephropathy. Mol Med Rep 9:2138–2144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Zhang X, Yuan X, Wang L, Xiao Y (2015) MicroRNA-205 inhibits renal cells apoptosis via targeting CMTM4. Iran J Basic Med Sci 18:1020–1026

    PubMed  PubMed Central  Google Scholar 

  • Zhang L, He S, Guo S, Xie W, Xin R, Yu H, Yang F, Qiu J, Zhang D, Zhou S, Zhang K (2014) Down-regulation of miR-34a alleviates mesangial proliferation in vitro and glomerular hypertrophy in early diabetic nephropathy mice by targeting GAS1. J Diabetes Complicat 28:259–264

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Yin S, Liu L, Liu Z, Cao W (2016b) Rhein reversal of DNA hypermethylation-associated Klotho suppression ameliorates renal fibrosis in mice. Sci Rep 6:34597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Liu L, Lin W, Yin S, Duan A, Liu Z, Cao W (2017) Rhein reverses Klotho repression via promoter demethylation and protects against kidney and bone injuries in mice with chronic kidney disease. Kidney Int 91:144-156

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Xia X, Reisenauer MR, Hemenway CS, Kone BC (2006) Dot1a-AF9 complex mediates histone H3 Lys-79 hypermethylation and repression of ENaCalpha in an aldosterone-sensitive manner. J Biol Chem 281:18059–18068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Xia X, Reisenauer MR, Rieg T, Lang F, Kuhl D, Vallon V, Kone BC (2007) Aldosterone-induced Sgk1 relieves Dot1a-Af9-mediated transcriptional repression of epithelial Na+ channel alpha. J Clin Invest 117:773–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Yu Z, Wu H, Chen L, Kong Q, Kone BC (2013) An Af9 cis-element directly targets Dot1a to mediate transcriptional repression of the alphaENaC gene. Am J Physiol Renal Physiol 304:F367–F375

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Song S, Luo H (2016) Regulation of podocyte lesions in diabetic nephropathy via miR-34a in the Notch signaling pathway. Medicine (Baltimore) 95:e5050

    Article  CAS  Google Scholar 

  • Zhang Z, Luo X, Ding S, Chen J, Chen T, Chen X, Zha H, Yao L, He X, Peng H (2012) MicroRNA-451 regulates p38 MAPK signaling by targeting of Ywhaz and suppresses the mesangial hypertrophy in early diabetic nephropathy. FEBS Lett 586:20–26

    Article  CAS  PubMed  Google Scholar 

  • Zhong X, Chung AC, Chen HY, Dong Y, Meng XM, Li R, Yang W, Hou FF, Lan HY (2013) miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia 56:663–674

    Article  CAS  PubMed  Google Scholar 

  • Zhong Y, Chen EY, Liu R, Chuang PY, Mallipattu SK, Tan CM, Clark NR, Deng Y, Klotman PE, Ma’ayan A, He JC (2013) Renoprotective effect of combined inhibition of angiotensin-converting enzyme and histone deacetylase. J Am Soc Nephrol 24:801–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou TB, Drummen GP, Jiang ZP, Li HY (2015) Methylenetetrahydrofolate reductase (MTHFR) C677T gene polymorphism and diabetic nephropathy susceptibility in patients with type 2 diabetes mellitus. Ren Fail 37:1247–1259

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of their work by a Marie Curie EU grant (CIG 293568; to W.B.W.), the Margarete von Wrangell Habilitationsprogramm, Ministerium für Wissenschaft Baden-Württemberg (to W.B.W.) and the Mathilde-Wagner-Habilitationspreis (to W.B.W.). This study was also supported by the German Research Foundation (DFG) within the CRC 1140 and CRC 992. The authors thank all members of their laboratory for their support and helpful discussions and apologize to those colleagues whose work has not been cited because of length restrictions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicola Wanner or Wibke Bechtel-Walz.

Ethics declarations

Disclosures

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wanner, N., Bechtel-Walz, W. Epigenetics of kidney disease. Cell Tissue Res 369, 75–92 (2017). https://doi.org/10.1007/s00441-017-2588-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-017-2588-x

Keywords

Navigation