Skip to main content

Advertisement

Log in

Effects of short-term inflammatory and/or hypoxic pretreatments on periodontal ligament stem cells: in vitro and in vivo studies

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In this study, we extensively screened the in vitro and in vivo effects of PDLSCs following short-term inflammatory and/or hypoxic pretreatments. We found that the 24-h hypoxic pretreatment of PDLSCs significantly enhanced cell migration and improved cell surface CXCR4 expression. In addition, hypoxia-pretreated PDLSCs exhibited improved cell colony formation and proliferation. Cells that were dually stimulated also formed more colonies compared to untreated cells but their proliferation did not increase. Importantly, the hypoxic pretreatment of PDLSCs enhanced cell differentiation as determined by elevated RUNX-2 and ALP protein expression. In this context, the inflammatory stimulus impaired cell OCN protein expression, while dual stimuli led to decreased RUNX-2 and OCN mRNA levels. Although preconditioning PDLSCs with inflammatory and/or hypoxic pretreatments resulted in no differences in the production of matrix proteins, hypoxic pretreatment led to the generation of thicker cell sheets; the inflammatory stimulus weakened the ability of cells to form sheets. All the resultant cell sheets exhibited clear bone regeneration following ectopic transplantation as well as in periodontal defect models; the amount of new bone formed by hypoxia-preconditioned cells was significantly greater than that formed by inflammatory stimulus- or dual-stimuli-treated cells or by nonpreconditioned cells. The regeneration of new cementum and periodontal ligaments was only identified in the hypoxia-stimulus and no-stimulus cell groups. Our findings suggest that PDLSCs that undergo short-term hypoxic pretreatment show improved cellular behavior in vitro and enhanced regenerative potential in vivo. The preconditioning of PDLSCs via combined treatments or an inflammatory stimulus requires further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ashton RS, Keung AJ, Peltier J, Schaffer DV (2011) Progress and prospects for stem cell engineering. Annu Rev Chem Biomol Eng 2:479–502

    Article  CAS  PubMed  Google Scholar 

  • Basciano L, Nemos C, Foliguet B, de Isla N, de Carvalho M, Tran N, Dalloul A (2011) Long term culture of mesenchymal stem cells in hypoxia promotes a genetic program maintaining their undifferentiated and multipotent status. BMC Cell Biol 12:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassir SH, Wisitrasameewong W, Raanan J, Ghaffarigarakani S, Chung J, Freire M, Andrada LC, Intini G (2016) Potential for stem cell-based periodontal therapy. J Cell Physiol 231:50–61

    Article  CAS  PubMed  Google Scholar 

  • Beegle J, Lakatos K, Kalomoiris S, Stewart H, Isseroff RR, Nolta JA, Fierro FA (2015) Hypoxic preconditioning of mesenchymal stromal cells induces metabolic changes, enhances survival, and promotes cell retention in vivo. Stem Cells 33:1818–1828

    Article  CAS  PubMed  Google Scholar 

  • Bright R, Hynes K, Gronthos S, Bartold PM (2015) Periodontal ligament-derived cells for periodontal regeneration in animal models: a systematic review. J Periodontal Res 50:160–172

    Article  CAS  PubMed  Google Scholar 

  • Buset S, Walter C, Friedmann A, Weiger R, Borgnakke WS, Zitzmann NU (2016) Are periodontal diseases really silent? A systematic review of their effect on quality of life. J Clin Periodontol. doi:10.1111/jcpe.12517

    PubMed  Google Scholar 

  • Chamila Prageeth Pandula PK, Samaranayake LP, Jin LJ, Zhang C (2014) Periodontal ligament stem cells: an update and perspectives. J Investig Clin Dent 5:81–90

    Article  CAS  PubMed  Google Scholar 

  • Chen FM, Jin Y (2010) Periodontal tissue engineering and regeneration: current approaches and expanding opportunities. Tissue Eng B 16:219–255

    Article  CAS  Google Scholar 

  • Chen FM, Shelton RM, Jin Y, Chapple ILC (2009) Localized delivery of growth factors for periodontal tissue regeneration: role, strategies, and perspectives. Med Res Rev 29:472–513

    Article  CAS  PubMed  Google Scholar 

  • Chen FM, Sun HH, Lu H, Yu Q (2012) Stem cell-delivery therapeutics for periodontal tissue regeneration. Biomaterials 33:6320–6344

    Article  CAS  PubMed  Google Scholar 

  • Chen FM, Gao LN, Tian BM, Zhang XY, Zhang YJ, Dong GY, Lu H, Chu Q, Xu J, Yu Y, Wu RX, Yin Y, Shi S, Jin Y (2016) Treatment of periodontal intrabony defects using autologous periodontal ligament stem cells: A randomized clinical trial. Stem Cell Res Ther 7:33

    Article  PubMed  PubMed Central  Google Scholar 

  • Dan H, Vaquette C, Fisher AG, Hamlet SM, Xiao Y, Hutmacher DW, Ivanovski S (2014) The influence of cellular source on periodontal regeneration using calcium phosphate coated polycaprolactone scaffold supported cell sheets. Biomaterials 35:113–122

    Article  CAS  PubMed  Google Scholar 

  • Dangaria SJ, Ito Y, Luan X, Diekwisch TGH (2011) Successful periodontal ligament regeneration by periodontal progenitor preseeding on natural tooth root surfaces. Stem Cells Dev 20:1659–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estrada JC, Albo C, Benguría A, Dopazo A, López-Romero P, Carrera-Quintanar L, Roche E, Clemente EP, Enríquez JA, Bernad A, Samper E (2012) Culture of human mesenchymal stem cells at low oxygen tension improves growth and genetic stability by activating glycolysis. Cell Death Differ 19:743–755

    Article  CAS  PubMed  Google Scholar 

  • Fan H, Zhao G, Liu L, Liu F, Gong W, Liu X, Yang L, Wang J, Hou Y (2012) Pre-treatment with IL-1beta enhances the efficacy of MSC transplantation in DSS-induced colitis. Cell Mol Immunol 9:473–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng F, Akiyama K, Liu Y, Yamaza T, Wang T, Chen J, Wang B, Huang GT, Wang S, Shi S (2010) Utility of PDL progenitors for in vivo tissue regeneration: a report of 3 cases. Oral Dis 16:20–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao LN, An Y, Lei M, Li B, Yang H, Lu H, Chen FM, Jin Y (2013) The effect of the coumarin-like derivative osthole on the osteogenic properties of human periodontal ligament and jaw bone marrow mesenchymal stem cell sheets. Biomaterials 34:9937–9951

    Article  CAS  PubMed  Google Scholar 

  • Glass GE, Chan JK, Freidin A, Feldmann M, Horwood NJ, Nanchahal J (2011) TNF-alpha promotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells. Proc Natl Acad Sci U S A 108:1585–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grayson WL, Zhao F, Bunnell B, Ma T (2007) Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochem Biophys Res Commun 358:948–953

    Article  CAS  PubMed  Google Scholar 

  • Groh M, Maitra B, Szekely E, Koç O (2005) Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Exp Hematol 33:928–934

    Article  CAS  PubMed  Google Scholar 

  • Haque N, Rahman MT, Abu Kasim NH, Alabsi AM (2013) Hypoxic culture conditions as a solution for mesenchymal stem cell based regenerative therapy. ScientificWorldJournal 2013:632972

    Article  PubMed  PubMed Central  Google Scholar 

  • Hess K, Ushmorov A, Fiedler J, Brenner RE, Wirth T (2009) TNFα promotes osteogenic differentiation of human mesenchymal stem cells by triggering the NF-kB signaling pathway. Bone 45:367–376

    Article  CAS  PubMed  Google Scholar 

  • Holzwarth C, Vaegler M, Gieseke F, Pfister SM, Handgretinger R, Kerst G, Müller I (2010) Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells. BMC Cell Biol 11:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Honczarenko M, Le Y, Swierkowski M, Ghiran I, Glodek AM, Silberstein LE (2006) Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 24:1030–1041

    Article  CAS  PubMed  Google Scholar 

  • Hynes K, Menicanin D, Gronthos S, Bartold PM (2012) Clinical utility of stem cells for periodontal regeneration. Periodontol 2000 59:203–227

  • Iwata T, Yamato M, Zhang Z, Mukobata S, Washio K, Ando T, Feijen J, Okano T, Ishikawa I (2010) Validation of human periodontal ligament-derived cells as a reliable source for cytotherapeutic use. J Clin Periodontol 37:1088–1099

    Article  CAS  PubMed  Google Scholar 

  • Iwata T, Washio K, Yoshida T, Ishikawa I, Ando T, Yamato M, Okano T (2015) Cell sheet engineering and its application for periodontal regeneration. J Tissue Eng Regen Med 9:343–356

    Article  CAS  PubMed  Google Scholar 

  • Izumi Y, Aoki A, Yamada Y, Kobayashi H, Iwata T, Akizuki T, Suda T, Nakamura S, Wara-Aswapati N, Ueda M, Ishikawa I (2011) Current and future periodontal tissue engineering. Periodontol 2000 56:166–187

  • Jayaraman P, Govindasamy V, Gnanasegaran N, Kunasekaran W, Vasanthan P, Musa S, Kasim NHA (2016) Expression patterns of immune genes in long-term cultured dental stem cells. Clin Oral Investig 20:109–116

  • Jung I, Kwon B, Kim S, Shim H, Jun C, Yun J (2013) Optimal medium formulation for the long-term expansion and maintenance of human periodontal ligament stem cells. J Periodontol 84:1434–1444

    Article  CAS  PubMed  Google Scholar 

  • Kanichai M, Ferguson D, Prendergast PJ, Campbell VA (2008) Hypoxia promotes chondrogenesis in rat mesenchymal stem cells: a role for AKT and hypoxia-inducible factor (HIF)-1alpha. J Cell Physiol 216:708–715

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Kang JW, Park JH, Choi Y, Choi KS, Park KD, Baek DH, Seong SK, Min H, Kim HS (2009) Biological characterization of long-term cultured human mesenchymal stem cells. Arch Pharm Res 32:117–126

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Park CH, Perez RA, Lee HY, Jang JH, Lee HH, Wall IB, Shi S, Kim HW (2014) Advanced biomatrix designs for regenerative therapy of periodontal tissues. J Dent Res 93:1203–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kono K, Maeda H, Fujii S, Tomokiyo A, Yamamoto N, Wada N, Monnouchi S, Teramatsu Y, Hamano S, Koori K, Akamine A (2013) Exposure to transforming growth factor-β1 after basic fibroblast growth factor promotes the fibroblastic differentiation of human periodontal ligament stem/progenitor cell lines. Cell Tissue Res 352:249–263

    Article  CAS  PubMed  Google Scholar 

  • Larsson L, Decker AM, Nibali L, Pilipchuk SP, Berglundh T, Giannobile WV (2016) Regenerative medicine for periodontal and peri-implant diseases. J Dent Res 95:255–266

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Choi E, Cha MJ, Hwang KC (2015) Cell adhesion and long-term survival of transplanted mesenchymal stem cells: a prerequisite for cell therapy. Oxid Med Cell Longev 2015:632902

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin FH, Chang JB, McGuire MH, Yee JA, Brigman BE (2010) Biphasic effects of interleukin-1beta on osteoblast differentiation in vitro. J Orthop Res 28:958–964

    CAS  PubMed  Google Scholar 

  • Liu C, Hwang S (2005) Cytokine interactions in mesenchymal stem cells from cord blood. Cytokine 32:270–279

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Xue W, Ge G, Luo X, Li Y, Xiang H, Ding X, Tian P, Tian X (2010) Hypoxic preconditioning advances CXCR4 and CXCR7 expression by activating HIF-1alpha in MSCs. Biochem Biophys Res Commun 401:509–515

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Xie C, Zhao Y, Chen FM (2013) Translational research and therapeutic applications of stem cell transplantation in periodontal regenerative medicine. Cell Transplant 22:205–229

    Article  PubMed  Google Scholar 

  • Maijenburg MW, van der Schoot CE, Voermans C (2012) Mesenchymal stromal cell migration: possibilities to improve cellular therapy. Stem Cells Dev 21:19–29

    Article  PubMed  Google Scholar 

  • Marquez-Curtis LA, Janowska-Wieczorek A (2013) Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/CXCR4 axis. Biomed Res Int 2013:561098

    Article  PubMed  PubMed Central  Google Scholar 

  • McClain PK, Schallhorn RG (2000) Focus on furcation defects--guided tissue regeneration in combination with bone grafting. Periodontol 2000 22:190–212

  • Monsarrat P, Vergnes JN, Nabet C, Sixou M, Snead ML, Planat-Bénard V, Casteilla L, Kémoun P (2014) Concise review: mesenchymal stromal cells used for periodontal regeneration: a systematic review. Stem Cells Transl Med 3:768–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagasawa T (2014) CXC chemokine ligand 12 (CXCL12) and its receptor CXCR4. J Mol Med (Berl) 92:433–439

    Article  CAS  Google Scholar 

  • Nekanti U, Dastidar S, Venugopal P, Totey S, Ta M (2010) Increased proliferation and analysis of differential gene expression in human Wharton’s jelly-derived mesenchymal stromal cells under hypoxia. Int J Biol Sci 6:499–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel NG, Zhang G (2014) Stacked stem cell sheets enhance cell-matrix interactions. Organogenesis 10:170–176

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng Y, Huang S, Wu Y, Cheng B, Nie X, Liu H, Ma K, Zhou J, Gao D, Feng C, Yang S, Fu X (2013) Platelet rich plasma clot releasate preconditioning induced PI3K/AKT/NFkB signaling enhances survival and regenerative function of rat bone marrow mesenchymal stem cells in hostile microenvironments. Stem Cells Dev 22:3236–3251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pihlstrom BL, Michalowicz BS, Johnson NW (2005) Periodontal diseases. Lancet 366:1809–1820

    Article  PubMed  Google Scholar 

  • Proksch S, Steinberg T, Vach K, Hellwig E, Tomakidi P (2014) Shaping oral cell plasticity to osteogenic differentiation by human mesenchymal stem cell coculture. Cell Tissue Res 356:159–170

    Article  PubMed  Google Scholar 

  • Sawa Y, Phillips A, Hollard J, Yoshida S, Braithwaite MW (2000) The in vitro life-span of human periodontal ligament fibroblasts. Tissue Cell 32:163–170

    Article  CAS  PubMed  Google Scholar 

  • Schett G (2011) Effects of inflammatory and anti-inflammatory cytokines on the bone. Eur J Clin Invest 41:1361–1366

    Article  CAS  PubMed  Google Scholar 

  • Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Raju R, Sui S, Hu W (2011) Stem cell culture engineering - process scale up and beyond. Biotechnol J 6:1317–1329

    Article  CAS  PubMed  Google Scholar 

  • Shi M, Li J, Liao L, Chen B, Li B, Chen L, Jia H, Zhao RC (2007) Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in homing efficiency in NOD/SCID mice. Haematologica 92:897–904

    Article  PubMed  Google Scholar 

  • Tang HN, Xia Y, Yu Y, Wu RX, Gao LN, Chen FM (2016) Stem cells derived from “inflamed” and healthy periodontal ligament tissues and their sheet functionalities: a patient-matched comparison. J Clin Periodontol 43:72–84

    Article  CAS  PubMed  Google Scholar 

  • Teramatsu Y, Maeda H, Sugii H, Tomokiyo A, Hamano S, Wada N, Yuda A, Yamamoto N, Koori K, Akamine A (2014) Expression and effects of epidermal growth factor on human periodontal ligament cells. Cell Tissue Res 357:633–643

    Article  CAS  PubMed  Google Scholar 

  • Thirumala S, Goebel WS, Woods EJ (2013) Manufacturing and banking of mesenchymal stem cells. Expert Opin Biol Ther 13:673–691

    Article  CAS  PubMed  Google Scholar 

  • Trubiani O, Piattelli A, Gatta V, Marchisio M, Diomede F, D’Aurora M, Merciaro I, Pierdomenico L, Maraldi NM, Zini N (2015) Assessment of an efficient xeno-free culture system of human periodontal ligament stem cells. Tissue Eng C 21:52–64

    Article  CAS  Google Scholar 

  • Tsumanuma Y, Iwata T, Washio K, Yoshida T, Yamada A, Takagi R, Ohno T, Lin K, Yamato M, Ishikawa I, Okano T, Izumi Y (2011) Comparison of different tissue-derived stem cell sheets for periodontal regeneration in a canine 1-wall defect model. Biomaterials 32:5819–5825

    Article  CAS  PubMed  Google Scholar 

  • Valorani MG, Montelatici E, Germani A, Biddle A, D’Alessandro D, Strollo R, Patrizi MP, Lazzari L, Nye E, Otto WR, Pozzilli P, Alison MR (2012) Pre-culturing human adipose tissue mesenchymal stem cells under hypoxia increases their adipogenic and osteogenic differentiation potentials. Cell Prolif 45:225–238

    Article  CAS  PubMed  Google Scholar 

  • Volkmer E, Kallukalam BC, Maertz J, Otto S, Drosse I, Polzer H, Bocker W, Stengele M, Docheva D, Mutschler W, Schieker M (2010) Hypoxic preconditioning of human mesenchymal stem cells overcomes hypoxia-induced inhibition of osteogenic differentiation. Tissue Eng A 16:153–164

    Article  CAS  Google Scholar 

  • Wei F, Qu C, Song T, Ding G, Fan Z, Liu D, Liu Y, Zhang C, Shi S, Wang S (2012) Vitamin C treatment promotes mesenchymal stem cell sheet formation and tissue regeneration by elevating telomerase activity. J Cell Physiol 227:3216–3224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Yang Y, Yang P, Gu Y, Zhao Z, Tan L, Zhao L, Tang T, Li Y (2013) The osteogenic differentiation of PDLSCs is mediated through MEK/ERK and p38 MAPK signalling under hypoxia. Arch Oral Biol 58:1357–1368

    Article  CAS  PubMed  Google Scholar 

  • Wu RX, Bi CS, Yu Y, Zhang LL, Chen FM (2015) Age-related decline in the matrix contents and functional properties of human periodontal ligament stem cell sheets. Acta Biomater 22:70–82

    Article  CAS  PubMed  Google Scholar 

  • Wu RX, Yu Y, Yin Y, Zhang XY, Gao LN, Chen FM (2016) Platelet lysate supports the in vitro expansion of human periodontal ligament stem cells for cytotherapeutic use. J Tissue Eng Regen Med. doi:10.1002/term.2124

    Google Scholar 

  • Yang Y, Rossi FMV, Putnins EE (2010) Periodontal regeneration using engineered bone marrow mesenchymal stromal cells. Biomaterials 31:8574–8582

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Gao LN, An Y, Hu CH, Jin F, Zhou J, Jin Y, Chen FM (2013) Comparison of mesenchymal stem cells derived from gingival tissue and periodontal ligament in different incubation conditions. Biomaterials 34:7033–7047

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Wu RX, Gao LN, Xia Y, Tang HN, Chen FM (2016) Stromal cell-derived factor-1-directed bone marrow mesenchymal stem cell migration in response to inflammatory and/or hypoxic stimuli. Cell Adhe Migr 8:1–18

    Google Scholar 

  • Zhang QB, Zhang ZQ, Fang SL, Liu YR, Jiang G, Li KF (2014) Effects of hypoxia on proliferation and osteogenic differentiation of periodontal ligament stem cells: an in vitro and in vivo study. Genet Mol Res 13:10204–10214

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Grimes SN, Li S, Hu X, Ivashkiv LB (2012) TNF-induced osteoclastogenesis and inflammatory bone resorption are inhibited by transcription factor RBP-J. J Exp Med 209:319–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng W, Wang S, Wang J, Jin F (2015) Periodontitis promotes the proliferation and suppresses the differentiation potential of human periodontal ligament stem cells. Int J Mol Med 36:915–922

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou S, Wang J, Chiang C, Sheng L, Li Q (2013) Mechanical stretch upregulates SDF-1α in skin tissue and induces migration of circulating bone marrow-derived stem cells into the expanded skin. Stem Cells 31:2703–2713

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Fan W, Xiao Y (2014) The effect of hypoxia on the stemness and differentiation capacity of PDLC and DPC. BioMed Res Int 2014:890675

    PubMed  PubMed Central  Google Scholar 

  • Ziaei R, Ayatollahi M, Yaghobi R, Sahraeian Z, Zarghami N (2014) Involvement of TNF-alpha in differential gene expression pattern of CXCR4 on human marrow-derived mesenchymal stem cells. Mol Biol Rep 41:1059–1066

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fa-Ming Chen.

Ethics declarations

Conflicts of interest

The authors indicate no potential conflicts of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 81530050, 81471791 and 81500853) and the Program for New Century Excellent Talents in University (NCET-12-1005).

Yang Yu, Chun-Sheng Bi and Rui-Xin Wu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Bi, CS., Wu, RX. et al. Effects of short-term inflammatory and/or hypoxic pretreatments on periodontal ligament stem cells: in vitro and in vivo studies. Cell Tissue Res 366, 311–328 (2016). https://doi.org/10.1007/s00441-016-2437-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-016-2437-3

Keywords

Navigation