Skip to main content
Log in

Expression of insulin-like factor 3 hormone-receptor system in the reproductive organs of male goats

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Relaxin-like factor (RLF), generally known as insulin-like factor 3 (INSL3), is essential for testis descent during fetal development. However, its role in adult males is not fully understood. We investigate the function of INSL3 in male Saanen goats by identifying cell types expressing its receptor, relaxin/insulin-like family peptide receptor (RXFP)2 and by characterizing the developmental expression pattern of INSL3 and RXFP2 and the binding of INSL3 to target cells in the male reproductive system. A highly specific RXFP2 antibody that co-localizes with an anti-FLAG antibody in HEK-293 cells recognizes RXFP2-transcript-expressing cells in the testis. INSL3 and RXFP2 mRNA expression is upregulated in the testis, starting from puberty. INSL3 mRNA and protein expression has been detected in Leydig cells, whereas RXFP2 mRNA and protein localize to Leydig cells, to meiotic and post-meiotic germ cells and to the epithelium and smooth muscle of the cauda epididymis and vas deferens. INSL3 binds to all of these tissues and cell types, with the exception of Leydig cells, in a hormone-specific and saturable manner. These results provide evidence for a functional intra- and extra-testicular INSL3 ligand-receptor system in adult male goats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdel-Aziz M (2010) Present status of the world goat populations and their productivity. Lohmann Inf 45:42–52

    Google Scholar 

  • Anand-Ivell RJ, Relan V, Balvers M, Coiffec-Dorval I, Fritsch M, Bathgate RA, Ivell R (2006) Expression of the insulin-like peptide 3 (INSL3) hormone-receptor (LGR8) system in the testis. Biol Reprod 74:945–953

    Article  CAS  PubMed  Google Scholar 

  • Anand-Ivell R, Heng K, Hafen B, Setchell B, Ivell R (2009) Dynamics of INSL3 peptide expression in the rodent testis. Biol Reprod 81:480–487

    Article  CAS  PubMed  Google Scholar 

  • Andonian S, Hermo L (1999) Immunocytochemical localization of the Ya, Yb1, Yc, Yf, and Yo subunits of glutathione S-transferases in the cauda epididymidis and vas deferens of adult rats. J Androl 20:145–157

    CAS  PubMed  Google Scholar 

  • Bigoni R, Calo G, Guerrini R, Strupish JW, Rowbotham DJ, Lambert DG (2001) Effects of nociceptin and endomorphin 1 on the electrically stimulated human vas deferens. Br J Clin Pharmacol 51:355–358

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bogatcheva NV, Truong A, Feng S, Engel W, Adham IM, Agoulnik AI (2003) GREAT/LGR8 is the only receptor for insulin-like 3 peptide. Mol Endocrinol 17:2639–2646

    Article  CAS  PubMed  Google Scholar 

  • Callander GE, Thomas WG, Bathgate RA (2009) Prolonged RXFP1 and RXFP2 signaling can be explained by poor internalization and lack of beta-arrestin recruitment. Am J Physiol Cell Physiol 296:1058–1066

    Article  Google Scholar 

  • Feng S, Bogatcheva NV, Truong A, Korchin B, Bishop CE, Klonisch T, Agoulnik IU, Agoulnik AI (2007) Developmental expression and gene regulation of insulin-like 3 receptor RXFP2 in mouse male reproductive organs. Biol Reprod 77:671–680

    Article  CAS  PubMed  Google Scholar 

  • Ferguson SS (2001) Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 53:1–24

    CAS  PubMed  Google Scholar 

  • Filonzi M, Cardoso LC, Pimenta MT, Queiróz DB, Avellar MC, Porto CS, Lazari MF (2007) Relaxin family peptide receptors Rxfp1 and Rxfp2: mapping of the mRNA and protein distribution in the reproductive tract of the male rat. Reprod Biol Endocrinol 5:29

    Article  PubMed Central  PubMed  Google Scholar 

  • França LR, Becker-Silva SC, Chiarini-Garcia H (1999) The length of the cycle of seminiferous epithelium in goats (Capra hircus). Tissue Cell 31:274–280

    Article  PubMed  Google Scholar 

  • Gorlov IP, Kamat A, Bogatcheva NV, Jones E, Lamb DJ, Truong A, Bishop CE, McElreavey K, Agoulnik AI (2002) Mutations of the GREAT gene cause cryptochidism. Hum Mol Genet 11:2309–2318

    Article  CAS  PubMed  Google Scholar 

  • Goyal HO, Williams CS, Vig MM (2000) Postnatal differentiation of efferent ductule epithelium in goats: a light microscopic and ultrastructural study. Anat Rec 259:1–11

    Article  CAS  PubMed  Google Scholar 

  • Hadziselimovic F, Adham I (2007) Insulin 3-like hormone and its role in epididymo-testicular descent. Int Braz J Urol 33:407–411

    Article  PubMed  Google Scholar 

  • Hombach-Klonisch S, Tetens F, Kauffold J, Steger K, Fischer B, Klonisch T (1999) Molecular cloning and localization of caprine relaxin-like factor (RLF) mRNA within the goat testis. Mol Reprod Dev 53:135–141

    Article  CAS  PubMed  Google Scholar 

  • Hombach-Klonisch S, Schön J, Kehlen A, Blottner S, Klonisch T (2004) Seasonal expression of INSL3 and Lgr8/Insl3 receptor transcripts indicates variable differentiation of Leydig cells in the roe deer testis. Biol Reprod 71:1079–1087

    Article  CAS  PubMed  Google Scholar 

  • Hsu SY, Nakabayashi K, Nishi S, Kumagai J, Kudo M, Sherwood OD, Hsueh AJ (2002) Activation of orphan receptors by the hormone relaxin. Science 295:671–674

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Rivas B, Agoulnik AI (2012) Insulin-like 3 signaling is important for testicular descent but dispensable for spermatogenesis and germ cell survival in adult mice. Biol Reprod 87:1–8

    Article  Google Scholar 

  • Ivell R, Anand-Ivell R (2009) Biology of insulin-like factor 3 in human reproduction. Hum Reprod Update 15:463–476

    Article  CAS  PubMed  Google Scholar 

  • Johnson KJ, Robbins AK, Wang Y, McCahan SM, Chacko JK, Barthold JS (2010) Insulin-like 3 exposure of the fetal rat gubernaculum modulates expression of genes involved in neural pathways. Biol Reprod 83:774–782

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kamat AA, Feng S, Bogatcheva NV, Truong A, Bishop CE, Agoulnik AI (2004) Genetic targeting of relaxin and insulin-like factor 3 receptors in mice. Endocrinology 145:4712–4720

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Siqin, Minagawa I, Aoshima T, Sagata D, Konishi H, Yogo K, Kawarasaki T, Sasada H, Tomogane H, Kohsaka T (2010) Evidence for expression of relaxin hormone-receptor system in the boar testis. J Endocrinol 207:135–149

    Article  CAS  PubMed  Google Scholar 

  • Kawamura K, Kumagai J, Sudo S, Chun SY, Pisarska M, Morita H, Toppari J, Fu P, Wade JD, Bathgate RA, Hsueh AJ (2004) Paracrine regulation of mammalian oocyte maturation and male germ cell survival. Proc Natl Acad Sci U S A 101:7323–7328

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kern Y, Bryant-Greenwood GD (2009) Characterization of relaxin receptor (RXFP1) desensitization and internalization in primary human decidual cells and RXFP1-transfected HEK293 cells. Endocrinology 150:2419–2428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kerr JB, Knell CM (1988) The fate of fetal Leydig cells during the development of the fetal and postnatal rat testis. Development 103:535–544

    CAS  PubMed  Google Scholar 

  • Koeva YA, Bakalska MV, Atanassova NN, Davidoff MS (2008) INSLF3-LGR8 ligand-receptor system in testes of mature rats after exposure to ethane dimethanesulphonate. Folia Med 50:37–42

    Google Scholar 

  • Kohsaka T (2013) Testis, sperm and accessory glands. In: Society for Reproduction and Development (ed) Textbook of reproduction and development. Interzoo, Tokyo, pp 41–59 (in Japanese)

  • Kohsaka T, Takahara H, Sugawara K, Tagami S (1993) Endogenous heterogeneity of relaxin and sequence of the major form in pregnant sow ovaries. Biol Chem Hoppe Seyler 374:203–210

    Article  CAS  PubMed  Google Scholar 

  • Kohsaka T, Min G, Lukas G, Trupin S, Campbell ET, Sherwood OD (1998) Identification of specific relaxin-binding cells in the human female. Biol Reprod 59:991–999

    Article  CAS  PubMed  Google Scholar 

  • Kohsaka T, Sasada H, Takahara H, Sato E, Bamba K, Sherwood OD (2001) The presence of specific binding sites on boar spermatozoa for porcine relaxin and its action on their motility characteristics. J Reprod Dev 47:197–204

    Article  CAS  Google Scholar 

  • Kohsaka T, Sagata D, Minagawa I, Kohriki H, Pitia AM, Sugii Y, Morimoto M, Uera N, Shibata M, Sasada H, Hasegawa Y (2013) Expression and localization of RLF/INSL3 receptor RXFP2 in boar testes. Ital J Anat Embryol 118:23–25

    PubMed  Google Scholar 

  • Kubota Y, Temelcos C, Bathgate RA, Smith KJ, Scott D, Zhao C, Hutson JM (2002) The role of insulin 3, testosterone, Mullerian inhibiting substance and relaxin in rat gubernacular growth. Mol Hum Reprod 8:900–905

    Article  CAS  PubMed  Google Scholar 

  • Kumagai J, Hsu SY, Matsumi H, Roh JS, Fu P, Wade JD, Bathgate RA, Hsueh AJ (2002) INSL3/Leydig insulin-like peptide activates the LGR8 receptor important in testis descent. J Biol Chem 277:31283–31286

    Article  CAS  PubMed  Google Scholar 

  • Kuopio T, Tapanainen J, Pelliniemi LJ, Huhtaniemi I (1989) Developmental stages of fetal-type Leydig cells in prepubertal rats. Development 107:213–220

    CAS  PubMed  Google Scholar 

  • McKinnell C, Sharpe RM, Mahood K, Hallmark N, Scott H, Ivell R, Staub C, Jégou B, Haag F, Koch-Nolte F, Hartung S (2005) Expression of insulin-like factor 3 protein in the rat testis during fetal and postnatal development and in relation to cryptochidism induced by in utero exposure to di (n-butyl) phthalate. Endocrinology 146:4536–4544

    Article  CAS  PubMed  Google Scholar 

  • Menzies JR, Glen T, Davies MR, Paterson SJ, Corbett AD (1999) In vitro agonist effects of nociceptin and [Phe1ψ (CH2-NH)Gly2]nociceptin(1–13)NH2 in the mouse and rat colon and the mouse vas deferens. Eur J Pharmacol 385:217–223

    Article  CAS  PubMed  Google Scholar 

  • Minagawa I, Fukuda M, Ishige H, Kohriki H, Shibata M, Park EY, Kawarasaki T, Kohsaka T (2012) Relaxin-like factor (RLF)/insulin-like peptide 3 (INSL3) is secreted from testicular Leydig cells as a monomeric protein comprising three domains B-C-A with full biological activity in boars. Biochem J 441:265–273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Minagawa I, Sagata D, Pitia AM, Kohriki H, Shibata M, Sasada H, Hasegawa Y, Kohsaka T (2014) Dynamics of insulin-like factor 3 and its receptor expression in boar testes. J Endocrinol 220:247–261

    Article  CAS  PubMed  Google Scholar 

  • Muda M, He C, Martini PG, Ferraro T, Layfield S, Taylor D, Chevrier C, Schweickhardt R, Kelton C, Ryan PL, Bathgate RA (2005) Splice variants of the relaxin and INSL3 receptors reveal unanticipated molecular complexity. Mol Hum Reprod 11:591–600

    Article  CAS  PubMed  Google Scholar 

  • Nef S, Parada LF (1999) Cryptorchidism in mice mutant for Insl3. Nat Genet 22:295–299

    Article  CAS  PubMed  Google Scholar 

  • Okawa H, Nicol B, Bigoni R, Hirst RA, Calo G, Guerrini R, Rowbotham DJ, Smart D, McKnight AT, Lambert DG (1999) Comparison of the effects of [Phe1Ψ(CH2-NH)Gly2]nociceptin(1–13)NH2 in rat brain, rat vas deferens and CHO cells expressing recombinant human nociceptin receptors. Br J Pharmacol 127:123–130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pathirana IN, Kawate N, Büllesbach EE, Takahashi M, Hatayo S, Inaba T, Tamada H (2012) Insulin-like peptide 3 stimulates testosterone secretion in mouse Leydig cells via cAMP pathway. Regul Pept 178:102–106

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW (2006) Relative quantification. In: Dorak T (ed) Real-time PCR. Taylor & Francis Group, New York, pp 63–82

    Google Scholar 

  • Scott DJ, Layfield S, Yan Y, Sudo S, Hsueh AJ, Tregear GW, Bathgate RA (2006) Characterization of novel splice variants of LGR7 and LGR8 reveals that receptor signaling is mediated by their unique low density lipoprotein class A module. J Biol Chem 281:34942–34954

    Article  CAS  PubMed  Google Scholar 

  • Seiler P, Cooper TG, Nieschlag E (2000) Sperm number and condition affect the number of basal cells and their expression of macrophage antigen in the murine epididymis. Int J Androl 23:65–76

    Article  CAS  PubMed  Google Scholar 

  • Shum WW, Da Silva N, McKee M, Smith PJ, Brown D, Breton S (2008) Transepithelial projections from basal cells are luminal sensors in psudostratified epithelia. Cell 135:1108–1117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Siqin, Kotani M, Aoshima T, Nakai M, Fuchigami M, Odanaka Y, Sugawara Y, Yogo K, Nagura Y, Hamano K, Fujita M, Sasada H, Kohsaka T (2010a) Protein localization of relaxin-like factor in goat testes and its expression pattern during sexual development. Nihon Chikusan Gakkaiho 81:1–9 (in Japanese)

    Article  Google Scholar 

  • Siqin, Nakai M, Hagi T, Kato S, Pitia AM, Kotani M, Odanaka Y, Sugawara Y, Hamano K, Yogo K, Nagura Y, Fujita M, Sasada H, Sato E, Kohsaka T (2010b) Partial cDNA sequence of a relaxin-like factor (RLF) receptor, LGR8 and possible existence of the RLF ligand-receptor system in goat testes. Anim Sci J 81:681–686

    Article  CAS  PubMed  Google Scholar 

  • Siqin, Minagawa I, Okuno M, Yamada K, Sugawara Y, Nagura Y, Hamano K, Park EY, Sasada H, Kohsaka T (2013) The active form of goat insulin-like peptide 3 (INSL3) is a single-chain structure comprising three domains B-C-A, constitutively expressed and secreted by testicular Leydig cells. Biol Chem 394:1181–1194

    Article  CAS  PubMed  Google Scholar 

  • Svendsen AM, Vrecl M, Ellis TM, Heding A, Kristensen JB, Wade JD, Bathgate RA, De Meyts P, Nøhr J (2008a) Cooperative binding of insulin-like peptide 3 to a dimeric relaxin family peptide receptor 2. Endocrinology 149:1113–1120

    Article  CAS  PubMed  Google Scholar 

  • Svendsen AM, Zalesko A, Kønig J, Vrecl M, Heding A, Kristensen JB, Wade JD, Bathgate RA, De Meyts P, Nøhr J (2008b) Negative cooperatively in H2 binding to a dimeric relaxin family peptide. Mol Cell Endocrinol 296:10–17

    Article  CAS  PubMed  Google Scholar 

  • Veri JP, Hermo L, Robaire B (1993) Immunocytochemical localization of the Yf subunit of glutathione S-transferase P shows regional variation in the staining of epithelial cells of the testis, efferent ducts, and epididymis of the male rat. J Androl 14:23–44

    CAS  PubMed  Google Scholar 

  • Yeung CH, Nashan D, Sorg C, Oberpenning F, Schulze H, Nieschlag E, Cooper TG (1994) Basal cells of the human epididymis–antigenic and ultrastructural similarities to tissue-fixed macrophages. Biol Reprod 50:917–926

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann S, Steding G, Emmen JM, Brinkmann AO, Nayernia K, Holstein AF, Engel W, Adham IM (1999) Targeted disruption of the Insl3 gene causes bilateral cryptorchidism. Mol Endocrinol 13:681–691

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Y. Hattori (Keyence, Osaka, Japan) for the use of the BZ-9000 All-in-One fluorescence microscope and Dynamic cell count BZ-HIC software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Kohsaka.

Additional information

This work was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (nos. 24580408 and 15K07691 to T. Kohsaka).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitia, A.M., Minagawa, I., Uera, N. et al. Expression of insulin-like factor 3 hormone-receptor system in the reproductive organs of male goats. Cell Tissue Res 362, 407–420 (2015). https://doi.org/10.1007/s00441-015-2206-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2206-8

Keywords

Navigation