Skip to main content
Log in

Evidence for existence of insulin-like factor 3 (INSL3) hormone-receptor system in the ovarian corpus luteum and extra-ovarian reproductive organs during pregnancy in goats

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Insulin-like factor 3 (INSL3), initially described as a male hormone, is expressed in female reproductive organs during the estrous cycle and pregnancy but its function has not yet been established. This study explores the function of INSL3 in pregnant Saanen goats by characterizing the expression dynamics of INSL3 and its receptor, relaxin family peptide receptor 2 (RXFP2) and by demonstrating specific INSL3 binding in reproductive organs, using molecular and immunological approaches and ligand-receptor interaction assays. We demonstrate that the corpus luteum (CL) acts as both a source and target of INSL3 in pregnant goats, while extra-ovarian reproductive organs serve as additional INSL3 targets. The expression of INSL3 and RXFP2 in the CL reached maximum levels in middle pregnancy, followed by a decrease in late pregnancy; in contrast, RXFP2 expression levels in extra-ovarian reproductive organs were higher in the mammary glands but lower in the uterus, cervix and placenta and did not significantly change during pregnancy. The functional RXFP2 enabling INSL3 to bind was identified as an ~ 85 kDa protein in both the CL and mammary glands and localized in large and small luteal cells in the CL and in tubuloalveolar and ductal epithelial cells in the mammary glands. Additionally, INSL3 also bound to multiple cell types expressing RXFP2 in the uterus, cervix and placenta in a hormone-specific and saturable manner. These results provide evidence that an active intra- and extra-ovarian INSL3 hormone-receptor system operates during pregnancy in goats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdel-Aziz M (2010) Present status of the world goat populations and their productivity. Lohmann Inf 45:42–52

    Google Scholar 

  • Abe M, Hojo T, Kozai K, Okuda K (2013) Possible role of insulin-like factor 3 in the bovine corpus luteum. J Vet Med Sci 75:629–632

    Article  PubMed  CAS  Google Scholar 

  • Anand-Ivell RJ, Relan V, Balvers M, Coiffec-Dorval I, Fritsch M, Bathgate RA, Ivell R (2006) Expression of the insulin-like peptide 3 (INSL3) hormone-receptor (LGR8) system in the testis. Biol Reprod 74:945–953

    Article  CAS  PubMed  Google Scholar 

  • Anderson MB, Vaupel MR, Sherwood OD (1984) Pregnant mouse corpora lutea: immunocytochemical localization of relaxin and ultrastructure. Biol Reprod 31:391–397

    Article  CAS  PubMed  Google Scholar 

  • Arikan Ş, Yigit AA (2003) Changes in the size distribution of goat steroidogenic luteal cells during pregnancy. Small Rumin Res 47:227–231

    Article  Google Scholar 

  • Assis LH, Crespo D, Morais RD, França LR, Bogerd J, Sculz RW (2016) INSL3 stimulates spermatogonial differentiation in testis of adult zebrafish. Cell Tissue Res 363:579–588

    Article  CAS  PubMed  Google Scholar 

  • Balvers M, Spiess AN, Domagalski R, Hunt N, Kilic E, Mukhopadhyay AK, Hanks E, Charlton HM, Ivell R (1998) Relaxin-like factor expression as a marker of differentiation in the mouse testis and ovary. Endocrinology 139:2960–2970

    Article  CAS  PubMed  Google Scholar 

  • Bathgate R, Balvers M, Hunt N, Ivell R (1996) Relaxin-like factor gene is highly expressed in the bovine ovary of the cycle and pregnancy: sequence and messenger ribonucleic acid analysis. Biol Reprod 55:1452–1457

    Article  CAS  PubMed  Google Scholar 

  • Bathgate R, Moniac N, Bartlick B, Schumacher M, Fields M, Ivell R (1999) Expression and regulation of relaxin-like factor gene transcripts in the bovine ovary: differentiation-dependent expression in theca cell cultures. Biol Reprod 61:1090–1098

    Article  CAS  PubMed  Google Scholar 

  • Ben Chedly H, Boutinaud M, Bernier-Dodier P, Marnet PG, Lacasse P (2010) Disruption of cell junctions induces apoptosis and reduces synthetic activity in lactating goat mammary gland. J Dairy Sci 93:2938–2951

    Article  CAS  PubMed  Google Scholar 

  • Bogatcheva NV, Ferlin A, Feng S, Truong A, Gianesello L, Foresta C, Agoulnik AI (2007) T222P mutation of the insulin-like 3 hormone receptor LGR8 is associated with testicular maldescent and hinders receptor expression on the cell surface membrane. Am J Physiol Endocrinol Metab 292:E138–E144

    Article  CAS  PubMed  Google Scholar 

  • Brisken C, Heineman A, Chavarria T, Elenbaas B, Tan J, Dey SK, McMahon JA, McMahon AP, Weinberg RA (2000) Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Dev 14:650–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu EY, Hens J, Andl T, Kairo A, Yamaguchi TP, Brisken C, Glick A, Wysolmerski JJ, Millar SE (2004) Canonical WNT signaling promotes mammary placode development and is essential for initiation of mammary gland morphogenesis. Development 131:4819–4829

    Article  CAS  PubMed  Google Scholar 

  • Dai Y, Ivell R, Liu X, Janowski D, Anand-Ivell R (2017) Relaxin-family peptide receptors 1 and 2 are fully functional in the bovine. Front Physiol 8:359

    Article  PubMed  PubMed Central  Google Scholar 

  • Deák BH, Klukovits A, Kormányos Z, Tekes K, Ducza E, Gáspár R (2013) Uterus-relaxing effects of nociceptin and nocistatin: studies on preterm and term-pregnant human myometrium in vitro. Reprod Sys Sexual Disorders 2:117

    Google Scholar 

  • Dessauge F, Finot L, Wiart S, Aubry JM, Armani A, Ellis SE (2009) Effect of ovariectomy in prepubertal goats. J Physion Pharmacol 60:127–133

    Google Scholar 

  • Fehr S, Ivell R, Koll R, Schams D, Fields M, Richter D (1987) Expression of the oxytocin gene in the large cells of the bovine corpus luteum. FEBS Lett 210:45–50

    Article  CAS  PubMed  Google Scholar 

  • Feng SM, Almond GW (1998) Effects of LH, prostaglandin E2, 8-bromo-cyclic AMP and forskolin on progesterone secretion by pig luteal cells. J Reprod Fertil 113:83–89

    Article  CAS  PubMed  Google Scholar 

  • Feugang JM, Greene JM, Sanchez-Rodríguez HL, Stokes JV, Crenshaw MA, Willard ST, Ryan PL (2015) Profiling of relaxin and its receptor proteins in boar reproductive tissues and spermatozoa. Reprod Biol Endocrinol 20(13):46

    Article  CAS  Google Scholar 

  • Fields PA, Fields MJ (1985) Ultrastructural localization of relaxin in the corpus luteum of the nonpregnant, pseudopregnant, and pregnant pig. Biol Reprod 32:1169–1179

    Article  CAS  PubMed  Google Scholar 

  • Fields MJ, Barros CM, Watkins WB, Fields PA (1992) Characterization of large luteal cells and their secretory granules during the estrus cycle of the cow. Biol Reprod 46:535–545

    Article  CAS  PubMed  Google Scholar 

  • Fitz TA, Mayan MH, Sawyer HR, Niswender GD (1982) Characterization of two steroidogenic cell types in the ovine corpus luteum. Biol Reprod 27:703–711

    Article  CAS  PubMed  Google Scholar 

  • Glister C, Satchell L, Bathgate RA, Wade JD, Dai Y, Ivell R, Anand-Ivell R, Rodgers RJ, Knight PG (2013) Functional link between bone morphogenetic proteins and insulin-like peptide 3 signaling in modulating ovarian androgen production. Proc Natl Acad Sci USA 110:1426–1435

    Article  CAS  Google Scholar 

  • Golos TG, Weyhenmeyer JA, Herwood OD (1984) Immunocytochemical localization of relaxin in the ovaries of pregnant rats. Biolo Reprod 30:257–261

    Article  CAS  Google Scholar 

  • Goyal HO, Williams CS, Vig MM (2000) Postnatal differentiation of efferent ductule epithelium in goats: a light microscopic and ultra-structural study. Anat Rec 259:1–11

    Article  CAS  PubMed  Google Scholar 

  • Gregoraszczuk EL (1996) Large and small cells of the porcine corpus luteum: differential capacity to secrete estradiol and aromatize exogenous androgen during mid- and late luteal phase. Exp Clin Endocrinol Diabetes 104:278–283

    Article  CAS  PubMed  Google Scholar 

  • Guldenaar SE, Wathes DC, Pickering BT (1984) Immunocytochemical evidence for the presence of oxytocin and neurophysin in the large cells of the bovine corpus luteum. Cell Tissue Res 237:349–352

    Article  CAS  PubMed  Google Scholar 

  • Hampel U, Klonisch T, Sel S, Schulze U, Garreis F, Seitmann H, Zouboulis CC, Paulsen FP (2013) Insulin-like factor 3 promotes wound healing at the ocular surface. Endocrinology 154:2034–2045

    Article  CAS  PubMed  Google Scholar 

  • Hartley BJ, Scott DJ, Callander GE, Wilkinson TN, Ganella DE, Kong CK, Layfield S, Ferraro T, Petrie EJ, Bathgate RAD (2009) Resolving the unconventional mechanisms underlying RXFP1 and RXFP2 receptor function. Ann NY Acad Sci 1160:67–73

    Article  CAS  PubMed  Google Scholar 

  • Hombach-Klonisch S, Tetens F, Kauffold J, Steger K, Fischer B, Klonisch T (1999) Molecular cloning and localization of caprine relaxin-like factor (RLF) mRNA within the goat testis. Mol Reprod Dev 53:135–141

    Article  CAS  PubMed  Google Scholar 

  • Hombach-Klonisch S, Kauffold J, Rautenberg T, Steger K, Tetens F, Fischer B, Klonisch T (2000) Relaxin-like factor (RLF) mRNA expression in the fallow deer. Mol Cell Endocrinol 159:147–158

    Article  CAS  PubMed  Google Scholar 

  • Hombach-Klonisch S, Buchmann J, Sarun S, Fischer B, Klonisch T (2000) Relaxin-like factor (RLF) is differentially expressed in the normal and neoplastic human mammary gland. Cancer 89:2161–2168

    Article  CAS  PubMed  Google Scholar 

  • Hombach-Klonisch S, Seeger S, Tscheuddchilsuren G, Buchmann J, Huppertz B, Seliger G, Fischer B, Klonisch T (2001) Cellular localization of human relaxin-like factor in the cyclic endometrium and placenta. Mol Hum Reprod 7:349–356

    Article  CAS  PubMed  Google Scholar 

  • Hsu SY, Nakabayashi K, Nishi S, Kumagai J, Kudo M, Sherwood OD, Hsueh AJ (2002) Relaxin signaling in reproductive tissues. Science 295:671–674

    Article  CAS  PubMed  Google Scholar 

  • Ivell R, Bathgate RA (2002) Reproductive biology of the relaxin-like factor (RLF/INSL3). Biol Reprod 67:699–705

    Article  CAS  PubMed  Google Scholar 

  • Jainudeen MR, Hafez ESE (1993) Sheep and goats. In: Hafez ESE (ed) Reproduction in farm animals, 6th edition. Lea & Febiger USA, pp 330–342

  • Johnson KJ, Robbins AK, Wang Y, McCahan SM, Chacko JK, Barthold JS (2010) Insulin-like 3 exposure of the fetal rat gubernaculum modulates expression of genes involved in neural pathways. Biol Reprod 83:774–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaftanovskaya EM, Feng S, Huang Z, Tan Y, Barbara AM, Kaur S, Truong A, Gorlov IP, Agoulnik AI (2011) Suppression of insulin-like3 receptor reveals the role of β-catenin and notch signaling in gubernaculums development. Mol Endocrinol 25:170–183

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Siqin MI, Aoshima T, Sagata D, Konishi H, Yogo K, Kawarasaki T, Sasada H, Tomogane H, Kohsaka T (2010) Evidence for expression of relaxin hormone-receptor system in the boar testis. J Endocrinol 207:135–149

    Article  CAS  PubMed  Google Scholar 

  • Kawamura K, Kumagai J, Sudo S, Chun SY, Pisarska M, Morita H, Toppari J, Fu P, Wade JD, Bathgate RA, Hsueh AJ (2004) Paracrine regulation of mammalian oocyte maturation and male germ cell survival. Proc Natl Acad Sci USA 101:7323–7328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klonisch T, Kauffold J, Steger K, Bergmann M, Leiser R, Fischer B, Hombach-Klonisch S (2001) Canine relaxin-like factor: unique molecular structure and differential expression within reproductive tissues of the dog. Biol Reprod 64:442–450

    Article  CAS  PubMed  Google Scholar 

  • Klukovits A, Tekes K, Gündüz Cinar O, Benyhe S, Borsodi A, Deák BH, Hajagos-Tóth J, Verli J, Falkay G, Gáspár R (2010) Nociceptin inhibits uterine contractions in term-pregnant rats by signaling through multiple pathways. Biol Reprod 83:36–41

    Article  CAS  PubMed  Google Scholar 

  • Kohsaka T, Min G, Lukas G, Trupin S, Campbell ET, Sherwood OD (1998) Identification of specific relaxin-binding cells in the human female. Biol Reprod 59:991–999

    Article  CAS  PubMed  Google Scholar 

  • Kohsaka T, Sasada H, Sato E, Bamba K, Hashizume K (2001) Ultrastructural properties and immunolocalization of relaxin in the cytoplasmic electron-dense granules of large luteal cells during pregnancy in cows. J Reprod Dev 47:217–225

    Article  CAS  Google Scholar 

  • Kohsaka T, Sasada H, Takahara H, Sato E, Bamba K, Sherwood OD (2001) The presence of specific binding sites on boar spermatozoa for porcine relaxin and its action on their motility characteristics. J Reprod Dev 47:197–204

    Article  CAS  Google Scholar 

  • Kohsaka T, Takahara H, Sasada H, Kawarasaki T, Bamba K, Masaki J, Tagami S (1992) Evidence for immunoreactive relaxin in boar seminal vesicles using combined light and electron microscope immunocytochemistry. J Reprod Fertil 95:397–408

    Article  CAS  PubMed  Google Scholar 

  • Kohsaka T, Sasada H, Masaki J (1992) Subcellular localization of the antigenic sites of relaxin in the luteal cells of the pregnant rat using an improved immunocytochemical technique. Anim Reprod Sci 29:123–132

    Article  CAS  Google Scholar 

  • Kohsaka T, Sasada H, Masaki J (1993a) Subcellular location of the maturation process of relaxin in rat luteal cells during pregnancy as revealed by immunogold labeling. Anim Reprod Sci 34:159–166

  • Kohsaka T, Takahara H, Sugawara K, Tagami S (1993b) Endogenous heterogeneity of relaxin and sequence of the major form in pregnant sow ovaries. Biol Chem Hoppe Seyler 374:203–210

  • Kohsaka T, Sagata D, Minagawa I, Kohriki H, Pitia AM, Sugii Y, Morimoto M, Uera N, Shibata M, Sasada H, Hasegawa Y (2013) Expression and localization of RLF/ INSL3 receptor RXFP2 in boar testes. Ital J Anat Embryol 118:23–25

    PubMed  Google Scholar 

  • Kumagai J, Hsu SY, Matsumi H, Roh JS, Fu P, Wade JD, Bathgate RA, Hsuehet AJW (2002) INSL3/Leydig insulin-like peptide activates the LGR8 receptor important in testis descent. J Biol Chem 277:31283–31286

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Feng S, Lopez V, Elhammady G, Anderson ML, Kaftanovskaya EM, Agoulnik AI (2011) Uterine cysts in female mice deficient for caveolin-1 and insulin-like 3 receptor RXFP2. Endocrinology 152:2474–2482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowndes K, Amano A, Yamamoto SY, Bryant-Greenwood GD (2006) The human relaxin receptor (LGR7): expression in the fetal membranes and placenta. Placenta 27:610–618

    Article  CAS  PubMed  Google Scholar 

  • Meidan R, Girsh E, Blum O, Aberdam E (1990) In vitro differentiation of bovine theca and granulosa cells into small and large luteal-like cells: morphological and functional characteristics. Biol Reprod 43:913–921

    Article  CAS  PubMed  Google Scholar 

  • Minagawa I, Fukuda M, Ishige H, Kohriki H, Shibata M, Park EY, Kawarasaki T, Kohsaka T (2012) Relaxin-like factor (RLF)/insulin-like peptide 3 (INSL3) is secreted from testicular Leydig cells as a monomeric protein comprising three domains B-C-A with full biological activity in boars. Biochem J 441:265–273

    Article  CAS  PubMed  Google Scholar 

  • Minagawa I, Sagata D, Pitia AM, Kohriki H, Shibata M, Sasada H, Hasegawa Y, Kohsaka T (2014) Dynamics of insulin-like factor 3 and its receptor expression in boar testes. J Endocrinol 220:247–261

    Article  CAS  PubMed  Google Scholar 

  • Miyauchi F, Midgley AR (1990) Morphologically and functionally distinct subpopulations of steroidogenic cells in corpora lutea during pregnancy in rats. Endocrinol Japon 37:649–663

    Article  CAS  Google Scholar 

  • Mondragón JA, Valdez RA, Gómez Y, Rosales AM, Romano MC (2012) Study of the steroidogenic pathways involved in goat placental androgen and estrogen synthesis. Small Rum Res 106:173–177

    Article  Google Scholar 

  • Muda M, He C, Martini PG, Ferraro T, Layfield S, Taylor D, Chevrier C, Schweickhard R, Kelton C, Ryan PL, Bathgate RA (2005) Splice variants of the relaxin and INSL3 receptors reveal unanticipated molecular complexity. Mol Hum Reprod 11:591–600

    Article  CAS  PubMed  Google Scholar 

  • Nef S, Parada LF (1999) Cryptorchidism in mice mutant for Insl3. Nat Genet 22:295–299

    Article  CAS  PubMed  Google Scholar 

  • Niswender GD, Juengel JL, Silva PJ, Rollyson MK, McIntush EW (2000) Mechanisms controlling the function and life span of the corpus luteum. Physiol Rev 80:1–29

    Article  CAS  PubMed  Google Scholar 

  • Nowak M, Gram A, Boos A, Aslan S, Ay SS, Önyay F, Kowalewski MP (2017) Functional implications of the utero-placental relaxin (RLN) system in the dog throughout pregnancy and at term. Reproduction 154:415–431

    Article  CAS  PubMed  Google Scholar 

  • Nowak M, Boos A, Kowalewski MP (2018) Luteal and hypophyseal expression of the canine relaxin (RLN) system during pregnancy: Implications for luteotropic function. PLoS ONE 13:e0191374. https://doi.org/10.1371/journal.pone.0191374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfaffl MW (2006) Relative quantification. In: Real-time PCR (ed) Dorak T. Taylor & Francis Group, New York, pp 63–82

    Google Scholar 

  • Pietilä EM, Tuusa JT, Apaja PM, Aatsinki JT, Hakalahti AE, Rajaniemi HJ, Petäjä-Repo UE (2005) Inefficient maturation of the rat luteinizing hormone receptor. A putative way to regulate receptor numbers at the cell surface. J Biol Chem 280:26622–26629

    Article  PubMed  CAS  Google Scholar 

  • Pitia AM, Minagawa I, Uera N, Hamano K, Sugawara Y, Nagura Y, Hasegawa Y, Oyamada T, Sasada H, Kohsaka T (2015) Expression of insulin-like factor 3 hormone-receptor system in the reproductive organs of male goats. Cell Tissue Res 362:407–420

    Article  CAS  PubMed  Google Scholar 

  • Pitia AM, Uchiyama K, Sano H, Kinukawa M, Minato Y, Sasada H, Kohsaka T (2017) Functional insulin-like factor 3 (INSL3) hormone-receptor system in the testes and spermatozoa of domestic ruminants and its potential as a predictor of sire fertility. Anim Sci J 88:678–690

    Article  CAS  PubMed  Google Scholar 

  • Plotka ED, Seal US, Verme LJ, Ozoga JJ (1982) Reproductive steroids in white-tailed deer IV. Origin of progesterone during pregnancy. Biol Reprod 26:258–262

    Article  CAS  PubMed  Google Scholar 

  • Przala J, Kaminski T, Siawrys G, Okrasa S (1999) Large luteal cells are the source of immunoreactive beta-endorphin in the pig: effects of HCG and TNFA on its secretion by luteal cells in vitro. Endocr Regul 33:117–123

    CAS  PubMed  Google Scholar 

  • Roche PJ, Crawford RJ, Tregear GW (1993) A single-copy relaxin-like gene sequence is present in sheep. Mol Cell Endocrinol 91:21–28

    Article  CAS  PubMed  Google Scholar 

  • Sagata D, Minagawa I, Kohriki H, Pitia AM, Uera N, Katakura Y, Sukigara H, Terada K, Shibata M, Park EY, Hasegawa Y, Sasada H, Kohsaka T (2015) The insulin-like factor 3 (INSL3)-receptor (RXFP2) network functions as a germ cell survival/anti apoptotic factor in boar testes. Endocrinology 156:1523–1539

    Article  CAS  PubMed  Google Scholar 

  • Sakumoto R (2016) Pregnancy-associated changes in uterine-luteal relationships in cows: a mini-review. Reprod Biol 16:182–188

    Article  PubMed  Google Scholar 

  • Satchell L, Glister C, Bleach EC, Glencross RG, Bicknell AB, Dai Y, Anand-Ivell R, Ivell R, Knight PG (2013) Ovarian expression of insulin-like peptide 3 (INSL3) and its receptor (RXFP2) during development of bovine antral follicles and corpora lutea and measurement of circulating INSL3 levels during synchronized estrous cycles. Endocrinology 154:1897–1906

    Article  CAS  PubMed  Google Scholar 

  • Schuler G, Fürbass R, Klisch K (2018) Placental contribution to the endocrinology of gestation and parturition. Anim Reprod 15:822–8242

    Article  Google Scholar 

  • Scott DJ, Layfield S, Yan Y, Sudo S, Hsueh AJ, Tregear GW, Bathgate RA (2006) Characterization of novel splice variants of LGR7 and LGR8 reveals that receptor signaling is mediated by their unique low-density lipoprotein class A module. J Biol Chem 281:34942–34954

    Article  CAS  PubMed  Google Scholar 

  • Sikora MJ, Jacobsen BM, Levine K, Chen J, Davidson NE, Lee AV, Alexander CM, Oesterreich S (2016) WNT4 mediates estrogen receptor signaling and endocrine resistance in invasive lobular carcinoma cell lines. Breast cancer Rec 18:92

    Article  CAS  Google Scholar 

  • Siqin KM, Aoshima T, Nakai M, Fuchigami M, Odanaka Y, Sugawara Y, Yogo K, Nagura Y, Hamano K, Fujita M, Sasada H, Kohsaka T (2010) Protein localization of relaxin-like factor in goat testes and its expression pattern during sexual development. Nihon Chikusan Gakkaiho 81:1–9 ((In Japanese))

    Article  Google Scholar 

  • Siqin NM, Hagi T, Kato S, Pitia AM, Kotani M, Odanaka Y, Sugawara Y, Hamano K, Yogo K, Nagura Y, Fujita M, Sasada H, Sato E, Kohsaka T (2010) Partial cDNA sequence of a relaxin-like factor (RLF) receptor, LGR8 and possible existence of the RLF ligand-receptor system in goat testes. Anim Sci J 81:681–686

    Article  CAS  PubMed  Google Scholar 

  • Siqin MI, Okuno M, Yamada K, Sugawara Y, Nagura Y, Hamano K, Park EY, Sasada H, Kohsaka T (2013) The active form of goat insulin-like peptide 3 (INSL3) is a single-chain structure comprising three domains B-C-A, constitutively expressed and secreted by testicular Leydig cells. Biol Chem 394:1181–1194

    Article  CAS  PubMed  Google Scholar 

  • Smith CJ, Greer TB, Banks TW, Sridaran R (1989) The response of large and small luteal cells from the pregnant rat to substrates and secretagogues. Biol Reprod 41:1123–1132

    Article  CAS  PubMed  Google Scholar 

  • Spanel-Borowski K, Schäfer I, Zimmermann S, Engel W, Adham IM (2001) Increase in final stages of follicular atresia and premature decay of corpora lutea in Insl3-deficient mice. Mol Reprod Dev 58:281–286

    Article  CAS  PubMed  Google Scholar 

  • Stocco C, Telleria C, Gibori G (2007) The molecular control of corpus luteum formation, function, and regression. Endocr Rev 28:117–149

    Article  CAS  PubMed  Google Scholar 

  • Tashima LS, Hieber AD, Greenwood FC, Bryant-Greenwood GD (1995) The human Leydig insulin-like (hLEY I-L) gene is expressed in the corpus luteum and trophoblast. J Clin Endocrinol Metabol 80:707–710

    CAS  Google Scholar 

  • Tepera SB, McCrea PD, Rosen JM (2003) A beta-catenin survival signal is required for normal lobular development in the mammary gland. J Cell Sci 15:1137–1149

    Article  CAS  Google Scholar 

  • Tuckey RC (2005) Progesterone synthesis by the human placenta. Placenta 26:273–281

    Article  CAS  PubMed  Google Scholar 

  • Uekita T, Yamanouchia K, Satod H, Tojoa H, Seikib M, Tachie C (2004) Expression and localization of matrix metalloproteinases (MT1-MMP, MMP-2) and tissue inhibitor of metalloproteinase-2 (TIMP-2) during synepitheliochorial placentation of goats (Capra hircus). Placenta 25:810–819

    Article  CAS  PubMed  Google Scholar 

  • Uria JA, Werb Z (1998) Matrix metalloproteinases and their expression in mammary gland. Cell Res 8:187–194

    Article  CAS  PubMed  Google Scholar 

  • Vodstrcil LA, Wlodek ME, Parry LJ (2007) Effects of uteroplacental restriction on the relaxin-family receptors, Lgr7 and Lgr8, in the uterus of late pregnant rats. Reprod Fertil Dev 19:530–538

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Scott DJ, Wilkinson TN, Ji J, Tregear GW, Bathgate RAD (2008) Identification of the N-linked glycosylation sites of the human relaxin receptor and effect of glycosylation on receptor function. Biochemistry 47:6953–6968

    Article  CAS  PubMed  Google Scholar 

  • Yart L, Finot L, Marnet PG, Dessauge F (2012) Suppression of ovarian secretions before puberty strongly affects mammogenesis in the goat. J Dairy Res 79:157–167

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Chen S, Wang Z, Tang C, Meng X, Li F, Zhao S (2013) Expression of synaptophysin and its mRNA in bovine corpus lutea during different stages of pregnancy. Res Vet Sci 94:449–452

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann S, Schottler P, Engel W, Adham IM (1997) Mouse Leydig insulin-like (Ley I-L) gene: structure and expression during testis and ovary development. Mol Reprod Dev 47:30–38

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann S, Steding G, Emmen JM, Brinkmann AO, Nayernia K, Holstein AF, Engel W, Adham IM (1999) Targeted disruption of the Insl3 gene causes bilateral cryptorchidism. Mol Endocrinol 13:681–691

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the staff at Tohoku University and Shinshu University for their help in caring and collecting tissue samples from goats. We also thank Ms Yoko Murata for her assistance with the qRT-PCR analysis.

Funding

This work was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (no. 18H02327 to T. Kohsaka).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Kohsaka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Animal handling and all experimental procedures were performed according to the Health Guidelines for the Care and Use of Experimental Animals of Tohoku University, Shinshu University and Shizuoka University.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitia, A.M., Minagawa, I., Abe, Y. et al. Evidence for existence of insulin-like factor 3 (INSL3) hormone-receptor system in the ovarian corpus luteum and extra-ovarian reproductive organs during pregnancy in goats. Cell Tissue Res 385, 173–189 (2021). https://doi.org/10.1007/s00441-021-03410-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-021-03410-1

Keywords

Navigation