Skip to main content

Advertisement

Log in

A Sertoli cell-specific connexin43 knockout leads to altered interstitial connexin expression and increased Leydig cell numbers

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The Sertoli cell (SC)-specific knockout (KO) of connexin43 (Cx43) results in spermatogenic arrest at the level of spermatogonia and/or SC-only syndrome. Histology of the interstitial compartment suggests Leydig cell (LC) hyperplasia. Our aim has been to investigate possible effects of the SC-specific KO of Cx43 (SCCx43KO) on interstitial LC. We therefore counted LC via the optical dissector method (per microliter of testicular tissue and per testis) and found LC to be significantly increased in SCCx43KO−/− compared with wild-type mice. Semiquantitative western blot together with Cx43 and 3β-hydroxysteroid dehydrogenase immunohistochemistry showed that Cx43 protein was significantly reduced and barely detectable in LC in adult SCCx43KO−/− mice. This reduction of Cx43 protein was accompanied by a reduction of Cx43 mRNA as analyzed by laser-assisted microdissection of interstitial cells and subsequent quantitative real-time polymerase chain reaction (PCR). Interestingly, Cx45, another recently detected connexin in LC, was also downregulated. Preliminary qualitative data of LC differentiation markers (Thb2, Hsd3b6) and a steroidogenic marker (Hsd17b3) obtained by reverse transcription plus PCR revealed no obvious differences. Thus, the loss of Cx43 in SC also provokes the downregulation of connexins in interstitial LC at the transcriptional and translational levels. Moreover, SCCx43KO leads to alterations in LC numbers. Despite these alterations, steroidogenesis seems not to be impaired. Further studies, including ultrastructural analysis of the tissue as well as quantitative examination of additional LC markers and testosterone, and functional in vitro experiments, should provide more information about LC differentiation and function in SCCx43KO−/− mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ariyaratne HBS, Mendis-Handagama SMLC (2000) Changes in the testis interstitium of Sprague Dawley rats from birth to sexual maturity. Biol Reprod 62:680–690

    Article  CAS  PubMed  Google Scholar 

  • Baker PJ, O’Shaughnessy PJ (2001) Role of gonadotrophins in regulating numbers of Leydig and Sertoli cells during fetal and postnatal development in mice. Reproduction 122:227–234

    Article  CAS  PubMed  Google Scholar 

  • Baker PJ, Sha JH, O’Shaughnessy PJ (1997) Localisation and regulation of 17 beta-hydroxysteroid dehydrogenase type 3 mRNA during development in the mouse testis. Mol Cell Endocrinol 133:127–133

    Article  CAS  PubMed  Google Scholar 

  • Baker PJ, Sha JA, McBride MW, Peng LH, Payne AH, O’Shaughnessy PJ (1999) Expression of 3 beta-hydroxysteroid dehydrogenase type I and type VI isoforms in the mouse testis during development. Eur J Biochem 260:911–916

    Article  CAS  PubMed  Google Scholar 

  • Batias C, Defamie N, Lablack A, Thepot D, Fenichel P, Segretain D, Pointis G (1999) Modified expression of testicular gap-junction connexin 43 during normal spermatogenic cycle and in altered spermatogenesis. Cell Tissue Res 298:113–121

    Article  CAS  PubMed  Google Scholar 

  • Batias C, Siffroi JP, Fenichel P, Pointis G, Segretain D (2000) Connexin43 gene expression and regulation in the rodent seminiferous epithelium. J Histochem Cytochem 48:793–805

    Article  CAS  PubMed  Google Scholar 

  • Behringer RR, Finegold MJ, Cate RL (1994) Mullerian-inhibiting substance function during mammalian sexual development. Cell 79:415–425

    Article  CAS  PubMed  Google Scholar 

  • Bravo-Moreno JF, Diaz-Sanchez V, Montoya-Flores JG, Lamoyi E, Saez JC, Perez-Armendariz EM (2001) Expression of connexin43 in mouse Leydig, Sertoli, and germinal cells at different stages of postnatal development. Anat Rec 264:13–24

    Article  CAS  PubMed  Google Scholar 

  • Brehm R, Marks A, Rey R, Kliesch S, Bergmann M, Steger K (2002) Altered expression of connexins 26 and 43 in Sertoli cells in seminiferous tubules infiltrated with carcinoma-in-situ or seminoma. J Pathol 197:647–653

    Article  CAS  PubMed  Google Scholar 

  • Brehm R, Ruettinger C, Fischer P, Gashaw I, Winterhager E, Kliesch S, Bohle RM, Steger K, Bergmann M (2006) Transition from preinvasive carcinoma in situ to seminoma is accompanied by a reduction of connexin 43 expression in Sertoli cells and germ cells. Neoplasia 8:499–509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brehm R, Zeiler M, Ruettinger C, Herde K, Kibschull M, Winterhager E, Willecke K, Guillou F, Lecureuil C, Steger K, Konrad L, Biermann K, Failing K, Bergmann M (2007) A Sertoli cell-specific knockout of connexin43 prevents initiation of spermatogenesis. Am J Pathol 171:19–31

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brennan J, Tilmann C, Capel B (2003) Pdgfr-alpha mediates testis cord organization and fetal Leydig cell development in the XY gonad. Genes Dev 17:800–810

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bruzzone R, White TW, Paul DL (1996) Connections with connexins: the molecular basis of direct intercellular signaling. Eur J Biochem 238:1–27

    Article  CAS  PubMed  Google Scholar 

  • Clark AM, Garland KK, Russell LD (2000) Desert hedgehog (Dhh) gene is required in the mouse testis for formation of adult-type Leydig cells and normal development of peritubular cells and seminiferous tubules. Biol Reprod 63:1825–1838

    Article  CAS  PubMed  Google Scholar 

  • De Rooij DG (2009) The spermatogonial stem cell niche. Microsc Res Tech 72:580–585

    Article  PubMed  Google Scholar 

  • Defamie N, Berthaut I, Mograbi B, Chevallier D, Dadoune JP, Fenichel P, Segretain D, Pointis G (2003) Impaired gap junction connexin43 in Sertoli cells of patients with secretory azoospermia: a marker of undifferentiated Sertoli cells. Lab Invest 83:449–456

    Article  CAS  PubMed  Google Scholar 

  • Ge R, Hardy MP (2007) Regulation of Leydig cells during pubertal development. In: Payne AH, Hardy MP (eds) The Leydig cell in health and disease. Humana, Totowa, pp 55–70

    Chapter  Google Scholar 

  • Gershon E, Plaks V, Aharon I, Galiani D, Reizel Y, Sela-Abramovich S, Granot I, Winterhager E, Dekel N (2008) Oocyte-directed depletion of connexin43 using the Cre-LoxP system leads to subfertility in female mice. Dev Biol 313:1–12

    Article  CAS  PubMed  Google Scholar 

  • Giese S, Hossain H, Markmann M, Chakraborty T, Tchatalbachev S, Guillou F, Bergmann M, Failing K, Weider K, Brehm R (2012) Sertoli-cell-specific knockout of connexin 43 leads to multiple alterations in testicular gene expression in prepubertal mice. Dis Model Mech 5:895–913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gnessi L, Basciani S, Mariani S, Arizzi M, Spera G, Wang C, Bondjers C, Karlsson L, Betsholtz C (2000) Leydig cell loss and spermatogenic arrest in platelet-derived growth factor (PDGF)-A-deficient mice. J Cell Biol 149:1019–1026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goldenberg RCS, Fortes FSA, Cristancho JM, Morales MM, Franci CR, Varanda WA, De Carvalho ACC (2003) Modulation of gap junction mediated intercellular communication in TM3 Leydig cells. J Endocrinol 177:327–335

    Article  CAS  PubMed  Google Scholar 

  • Guenther S, Fietz D, Weider K, Bergmann M, Brehm R (2013) Effects of a murine germ cell-specific knockout of Connexin 43 on connexin expression in testis and fertility. Transgenic Res 22:631–641

    Article  CAS  Google Scholar 

  • Haefliger JA, Bruzzone R, Jenkins NA, Gilbert DJ, Copeland NG, Paul DL (1992) Four novel members of the connexin family of gap junction proteins—molecular-cloning, expression, and chromosome mapping. J Biol Chem 267:2057–2064

    CAS  PubMed  Google Scholar 

  • Juneja SC (2003) mRNA expression pattern of multiple members of connexin gene family in normal and abnormal fetal gonads in mouse. Indian J Physiol Pharmacol 47:147–156

    CAS  PubMed  Google Scholar 

  • Kahiri CN, Khalil MW, Tekpetey F, Kidder GM (2006) Leydig cell function in mice lacking connexin43. Reproduction 132:607–616

    Article  CAS  PubMed  Google Scholar 

  • Kerr JB, Knell CM (1988) The fate of fetal Leydig cells during the development of the fetal and postnatal rat testis. Development 103:535–544

    CAS  PubMed  Google Scholar 

  • Khalaj M, Abbasi AR, Nishimura R, Akiyama K, Tsuji T, Noguchi J, Okuda K, Kunieda T (2008) Leydig cell hyperplasia in an ENU-induced mutant mouse with germ cell depletion. J Reprod Dev 54:225–228

    Article  PubMed  Google Scholar 

  • Krueger O, Plum A, Kim JS, Winterhager E, Maxeiner S, Hallas G, Kirchhoff S, Traub O, Lamers WH, Willecke K (2000) Defective vascular development in connexin 45-deficient mice. Development 127:4179–4193

    Google Scholar 

  • Kumar NM, Gilula NB (1996) The gap junction communication channel. Cell 84:381–388

    Article  CAS  PubMed  Google Scholar 

  • Lecureuil C, Fontaine I, Crepieux P, Guillou F (2002) Sertoli and granulosa cell-specific Cre recombinase activity in transgenic mice. Genesis 33:114–118

    Article  CAS  PubMed  Google Scholar 

  • Lee NPY, Leung KW, Wo JY, Tam PC, Yeung WSB, Luk JM (2006) Blockage of testicular connexins induced apoptosis in rat seminiferous epithelium. Apoptosis 11:1215–1229

    Article  CAS  PubMed  Google Scholar 

  • Li D, Sekhon P, Barr KJ, Marquez-Rosado L, Lampe PD, Kidder GM (2013) Connexins and steroidogenesis in mouse Leydig cells. Can J Physiol Pharmacol 91:157–164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Manthey D, Bukauskas F, Lee CG, Kozak CA, Willecke K (1999) Molecular cloning and functional expression of the mouse gap junction gene connexin-57 in human HeLa cells. J Biol Chem 274:14716–14723

    Article  CAS  PubMed  Google Scholar 

  • Mason JI, Howe BEC, Howie AF, Morley SD, Nicol MR, Payne AH (2004) Promiscuous 3 beta-hydroxysteroid dehydrogenases: testosterone 17 beta-hydroxysteroid dehydrogenase activities of mouse type I and VI 3 beta-hydroxysteroid dehydrogenases. Endocr Res 30:709–714

    Article  CAS  PubMed  Google Scholar 

  • Mishina Y, Rey R, Finegold MJ, Matzuk MM, Josso N, Cate RL, Behringer RR (1996) Genetic analysis of the Mullerian-inhibiting substance signal transduction pathway in mammalian sexual differentiation. Genes Dev 10:2577–2587

    Article  CAS  PubMed  Google Scholar 

  • Mok BW, Yeung WS, Luk JM (1999) Differential expression of gap-junction gene connexin 31 in seminiferous epithelium of rat testes. FEBS Lett 453:243–248

    Article  CAS  PubMed  Google Scholar 

  • Nielsen PA, Kumar NM (2003) Differences in expression patterns between mouse connexin-30.2 (Cx30.2) and its putative human orthologue, connexin-31.9. FEBS Lett 540:151–156

    Article  CAS  PubMed  Google Scholar 

  • Oatley JM, Brinster RL (2012) The germline stem cell niche unit in mammalian testes. Physiol Rev 92:577–595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Shaughnessy PJ, Baker PJ, Heikkila M, Vainio S, McMahon AP (2000) Localization of 17β-hydroxysteroid dehydrogenase/17-ketosteroid reductase isoform expression in the developing mouse testis-androstenedione is the major androgen secreted by fetal/neonatal Leydig cells. Endocrinology 141:2631–2637

    PubMed  Google Scholar 

  • O’Shaughnessy PJ, Willerton L, Baker PJ (2002) Changes in Leydig cell gene expression during development in the mouse. Biol Reprod 66:966–975

    Article  PubMed  Google Scholar 

  • Perez-Armendariz EM, Romano MC, Luna J, Miranda C, Bennett MVL, Moreno AP (1994) Characterization of gap-junctions between pairs of Leydig cells from mouse testis. Am J Physiol 267:C570–C580

    CAS  PubMed  Google Scholar 

  • Perez-Armendariz EM, Lamoyi E, Mason JI, Cisneros-Armas D, Luu-The V, Moreno JFB (2001) Developmental regulation of connexin 43 expression in fetal mouse testicular cells. Anat Rec 264:237–246

    Article  CAS  PubMed  Google Scholar 

  • Plum A, Hallas G, Magin T, Dombrowski F, Hagendorff A, Schumacher B, Wolpert C, Kim JS, Lamers WH, Evert M, Meda P, Traub O, Willecke K (2000) Unique and shared functions of different connexins in mice. Curr Biol 10:1083–1091

    Article  CAS  PubMed  Google Scholar 

  • Reaume AG, Sousa PA de, Kulkarni S, Langille BL, Zhu D, Davies TC, Juneja SC, Kidder GM, Rossant J (1995) Cardiac malformation in neonatal mice lacking connexin43. Science 267:1831–1834

  • Risley MS (2000) Connexin gene expression in seminiferous tubules of the Sprague–Dawley rat. Biol Reprod 62:748–754

    Article  CAS  PubMed  Google Scholar 

  • Risley MS, Tan IP, Roy C, Saez JC (1992) Cell-dependent, age-dependent and stage-dependent distribution of connexin43 gap-junctions in testes. J Cell Sci 103:81–96

    CAS  PubMed  Google Scholar 

  • Roscoe WA, Barr KJ, Mhawi AA, Pomerantz DK, Kidder GM (2001) Failure of spermatogenesis in mice lacking connexin43. Biol Reprod 65:829–838

    Article  CAS  PubMed  Google Scholar 

  • Russell LD, Warren J, Debeljuk L, Richardson LL, Mahar PL, Waymire KG, Amy SP, Ross AJ, MacGregor GR (2001) Spermatogenesis in Bclw-deficient mice. Biol Reprod 65:318–332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Segretain D, Decrouy X, Dompierre J, Escalier D, Rahman N, Fiorini C, Mograbi B, Siffroi JP, Huhtaniemi I, Fenichel P, Pointis G (2003) Sequestration of connexin43 in the early endosomes: an early event of Leydig cell tumor progression. Mol Carcinog 38:179–187

    Article  CAS  PubMed  Google Scholar 

  • Sharpe RM (1993) Experimental evidence for Sertoli-germ cell and Sertoli-Leydig cell interactions. In: Russell LD, Griswold MD (eds) The Sertoli cell. Cache River, Clearwater, pp 391–418

    Google Scholar 

  • Shima Y, Miyabayashi K, Haraguchi S, Arakawa T, Otake H, Baba T, Matsuzaki S, Shishido Y, Akiyama H, Tachibana T, Tsutsui K, Morohashi K (2013) Contribution of Leydig and Sertoli cells to testosterone production in mouse fetal testes. Mol Endocrinol 27:63–73

    Article  CAS  PubMed  Google Scholar 

  • Skinner MK (1991) Cell-cell interactions in the testis. Endocr Rev 12:45–77

    Article  CAS  PubMed  Google Scholar 

  • Soehl G, Willecke K (2004) Gap junctions and the connexin protein family. Cardiovasc Res 62:228–232

    Article  CAS  Google Scholar 

  • Sridharan S, Simon L, Meling DD, Cyr DG, Gutstein DE, Fishman GI, Guillou F, Cooke PS (2007) Proliferation of adult Sertoli cells following conditional knockout of the gap junctional protein GJA1 (Connexin 43) in mice. Biol Reprod 76:804–812

    Article  CAS  PubMed  Google Scholar 

  • Starich TA, Hall DH, Greenstein D (2014) Two classes of gap junction channels mediate soma-germline interactions essential for germline proliferation and gametogenesis in Caenorhabditis elegans. Genetics 198:1127–1153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Steger K, Tetens F, Bergmann M (1999) Expression of connexin 43 in human testis. Histochem Cell Biol 112:215–220

    Article  CAS  PubMed  Google Scholar 

  • Tan IP, Roy C, Saez JC, Saez CG, Paul DL, Risley MS (1996) Regulated assembly of Connexin33 and Connexin43 into rat Sertoli cell gap junctions. Biol Reprod 54:1300–1310

    Article  CAS  PubMed  Google Scholar 

  • Varanda WA, De Carvalho ACC (1994) Intercellular communication between mouse Leydig cells. Am J Physiol 267:C563–C569

    CAS  PubMed  Google Scholar 

  • Weider K, Bergmann M, Giese S, Guillou F, Failing K, Brehm R (2011) Altered differentiation and clustering of Sertoli cells in transgenic mice showing a Sertoli cell specific knockout of the connexin 43 gene. Differentiation 82:38–49

    Article  CAS  PubMed  Google Scholar 

  • Wikstroem AM, Dunkel L (2011) Klinefelter syndrome. Best Pract Res Clin Endocrinol Metab 25:239–250

    Article  CAS  Google Scholar 

  • Winterhager E, Pielensticker N, Freyer J, Ghanem A, Schrickel JW, Kim JS, Behr R, Grummer R, Maass K, Urschel S, Lewalter T, Tiemann K, Simoni M, Willecke K (2007) Replacement of connexin43 by connexin26 in transgenic mice leads to dysfunctional reproductive organs and slowed ventricular conduction in the heart. BMC Dev Biol 7:26

    Article  PubMed Central  PubMed  Google Scholar 

  • Wistuba J, Luetjens CM, Stukenborg JB, Poplinski A, Werler S, Dittmann M, Damm OS, Hamalainen T, Simoni M, Gromoll J (2010) Male 41, XXY* mice as a model for Klinefelter syndrome: hyperactivation of Leydig cells. Endocrinology 151:2898–2910

    Article  CAS  PubMed  Google Scholar 

  • Wreford NG (1995) Theory and practice of stereological techniques applied to the estimation of cell number and nuclear volume in the testis. Microsc Res Tech 32:423–436

    Article  CAS  PubMed  Google Scholar 

  • You S, Li W, Lin T (2000) Expression and regulation of connexin43 in rat Leydig cells. J Endocrinol 166:447–453

    Article  CAS  PubMed  Google Scholar 

  • Zhang JT, Nicholson BJ (1989) Sequence and tissue distribution of a second protein of hepatic gap junctions, Cx26, as deduced from its cDNA. J Cell Biol 109:3391–3401

    Article  CAS  PubMed  Google Scholar 

  • Zhang FP, Pakarainen T, Zhu F, Poutanen M, Huhtaniemi I (2004) Molecular characterization of postnatal development of testicular steroidogenesis in luteinizing hormone receptor knockout mice. Endocrinology 145:1453–1463

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. N. Hambruch (Institute of Anatomy, University of Veterinary Medicine Hannover, Foundation, Germany) for her advice and technical assistance with the laser microdissection approach and statistical analysis. We also thank Prof. J.I. Mason (Centre for Reproductive Biology, University of Edinburgh, Scotland) for providing the 3β-HSD antibody. We also gratefully acknowledge the technical support of Jutta Salzig, Centre of Reproductive Medicine and Andrology, Muenster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Brehm.

Additional information

This work was financially supported by the Kogge Foundation, Giessen, Germany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noelke, J., Wistuba, J., Damm, O.S. et al. A Sertoli cell-specific connexin43 knockout leads to altered interstitial connexin expression and increased Leydig cell numbers. Cell Tissue Res 361, 633–644 (2015). https://doi.org/10.1007/s00441-015-2126-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2126-7

Keywords

Navigation