Skip to main content
Log in

Effects of a murine germ cell-specific knockout of Connexin 43 on Connexin expression in testis and fertility

  • Brief Communication
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Connexin 43 (Cx 43)—expressed by germ cells (GC), Sertoli cells (SC) and Leydig cells—is one of at least eleven Cx in the murine testis. A general knockout (KO) of Cx 43 in mice results in perinatal death and a SC-specific KO of Cx 43 (SCCx43KO) causes infertility of male mice by preventing the initiation of spermatogenesis. To further elucidate the role of Cx 43 in the testis, a new mouse model with a GC-specific KO of Cx 43 (GCCx43KO) was created by using the Cre/loxP recombination system. A transgenic mouse line expressing the Cre gene under the tissue non-specific alkaline phosphatase promoter and a transgenic floxed Cx 43-LacZ mouse line were mated. The resulting F1-generation was backcrossed with homozygous Cx 43 floxed mice, and offspring was genotyped. Immunohistochemical analysis of testes of different aged homozygous mice revealed normal spermatogenesis and reduced Cx 43 immunoreactions. RT-qPCR and Western blots showed a downregulation of Cx 43 mRNA and protein, and a nearly unchanged mRNA expression of Cx 26, Cx 33 and Cx 45 in pubertal and adult KO mice. Western blots revealed considerable immunoreactive bands for Cx 26 and Cx 45. Male and female homozygous GCCx43KO mice were viable and fertile. Our data suggest, in contrast to inter SC and inter SC–GC cross talk in SCCx43KO mice which depends selectively on Cx 43 expression, that Cx 43 in GC seems not to be essential in GC–SC communication, when other Cx persist to be expressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Batias C, Defamie N, Lablack A, Thepot D, Fénichel P, Segretain D, Pointis G (1999) Modified expression of testicular gap-junction connexin 43 during normal spermatogenic cycle and in altered spermatogenesis. Cell Tissue Res 298:113–121. doi:10.1007/s004419900076

    Article  PubMed  CAS  Google Scholar 

  • Batias C, Siffroi J-P, Fénichel P, Pointis G, Segretain D (2000) Connexin43 gene expression and regulation in the rodent seminiferous epithelium. J Histochem Cytochem 48:793–805. doi:10.1177/002215540004800608

    Article  PubMed  CAS  Google Scholar 

  • Bravo-Moreno J, Díaz-Sánchez V, Montoya-Flores J, Lamoyi E, Saéz J, Pérez-Armendariz E (2001) Expression of Cx43 in mouse leydig, sertoli, and germinal cells at different stages of postnatal development. Anat Rec 264:13–24. doi:10.1002/ar.1100

    Article  PubMed  CAS  Google Scholar 

  • Brehm R, Zeiler M, Rüttinger C, Herde K, Kibschull M, Winterhager E, Willecke K, Guillou F, Lécureuil C, Steger K, Konrad L, Biermann K, Failing K, Bergmann M (2007) A sertoli cell-specific knockout of Connexin 43 prevents initiation of spermatogenesis. Am J Pathol 171:19–31. doi:10.2353/ajpath.2007.061171

    Article  PubMed  CAS  Google Scholar 

  • Brehm R, Zeiler M, Bergmann M (2009) Connexin 43 and spermatogenesis. In: Glander HJ, Paasch U (eds) Biology of male germ cells, 1st edn. Shaker Publisher GmbH, Aachen, pp 4–28

    Google Scholar 

  • Bronson F, Dagg C, Snell G (1966) Reproduction. In: Green E (ed) Biology of the laboratory mouse, 2nd edn. Dover Publications Inc, New York

    Google Scholar 

  • Bruzzone R, White T, Paul D (1996) Connections with connexins: the molecular basis of direct intercellular signaling. Eur J Biochem 238:1–27. doi:10.1111/j.1432-1033.1996.0001q.x

    Article  PubMed  CAS  Google Scholar 

  • Carette D, Weider K, Gilleron J, Giese S, Dompierre J, Bergmann M, Brehm R, Denizot JP, Segretain D, Pointis G (2010) Major involvement of Connexin 43 in seminiferous epithelial junction dynamics and male fertility. Dev Biol 346:54–67. doi:10.1016/j.ydbio.2010.07.014

    Article  PubMed  CAS  Google Scholar 

  • Chung S, Lee W, Cheng C (1999) Study on the formation of specialized inter-sertoli cell junctions in vitro. J Cell Physiol 181:258–272. doi:10.1002/(SICI)1097-4652(199911)181:2<258:AID-JCP8>3.0.CO;2-Q

    Article  PubMed  CAS  Google Scholar 

  • Decrouy X, Gasc JM, Pointis G, Segretain D (2004) Functional characterization of Cx43 based gap junctions during spermatogenesis. J Cell Physiol 200:146–154. doi:10.1002/jcp.10473

    Article  PubMed  CAS  Google Scholar 

  • Fiorini C, Mograbi B, Cronier L, Bourget I, Decrouy X, Nebout M, Ferrua B, Malassine A, Samson M, Fénichel P, Segretain D, Pointis G (2004) Dominant negative effect of connexin33 on gap junctional communication is mediated by connexin43 sequestration. J Cell Sci 117:4665–4672. doi:10.1242/jcs.01335

    Article  PubMed  CAS  Google Scholar 

  • Fiorini C, Decrouy X, Defamie N, Segretain D, Pointis G (2006) Opposite regulation of connexin33 and connexin43 by LPS and IL-1alpha in spermatogenesis. Am J Physiol Cell Physiol 290:C733–C740. doi:10.1152/ajpcell.00106.2005

    Article  PubMed  CAS  Google Scholar 

  • Fischer P, Brehm R, Konrad L, Hartmann S, Kliesch S, Bohle R, Bergmann M (2005) Connexin 33: a rodent-specific member of the gap junction protein family? J Androl 26:75–84

    PubMed  CAS  Google Scholar 

  • Gabriel HD, Jung D, Bützler C, Temme A, Traub O, Winterhager E, Willecke K (1998) Transplacental uptake of glucose is decreased in embryonic lethal Connexin26-deficient mice. J Cell Biol 140:1453–1461. doi:10.1083/jcb.140.6.1453

    Article  PubMed  CAS  Google Scholar 

  • Gilula NB, Fawcett DW, Aoki A (1976) The Sertoli cell occluding junctions and gap junctions in mature and developing mammalian testes. Dev Biol 50:142–168. doi:org/10.1016/0012-1606(76)90074-9

    Article  PubMed  CAS  Google Scholar 

  • Hayashi K, de Sousa Chuva, Lopes SM, Kaneda M, Ang F, Hajkova P, Lao K, O′Carroll D, Das P, Tarakhovsky A, Miska E, Surani M (2008) MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS One 3(3):e1738. doi:10.1371/journal.pone.0001738

    Article  PubMed  Google Scholar 

  • Kadle R, Zhang JT, Nicholson BJ (1991) Tissue-specific distribution of differentially phosphorylated forms of Cx43. Mol Cell Biol 11:363–369. doi:10.1128/MCB.11.1.363

    PubMed  CAS  Google Scholar 

  • Kehler J, Tolkunova E, Koschorz B, Pesce M, Gentile L, Boiani M, Lomelí H, Nagy A, McLaughlin KJ, Schöler HR, Tomilin A (2004) Oct4 is required for primordial germ cell survival. EMBO Rep 5:1078–1083. doi:10.1038/sj.embor.7400279

    Article  PubMed  CAS  Google Scholar 

  • Kimura T, Suzuki A, Fujita Y, Yomogida K, Lomeli H, Asada N, Ikeuchi M, Nagy A, Mak T, Nakano T (2003) Conditional loss of PTEN leads to testicular teratoma and enhances embryonic germ cell production. Development 130:1691–1700. doi:10.1242/dev.00392

    Article  PubMed  CAS  Google Scholar 

  • Krüger O, Plum A, Kim JS, Winterhager E, Maxeiner S, Hallas G, Kirchhoff S, Traub O, Lamers WH, Willecke K (2000) Defective vascular development in connexin 45-deficient mice. Development 127:4179–4193

    PubMed  Google Scholar 

  • Kumai M, Nishii K, Nakamura K, Takeda N, Suzuki M, Shibata Y (2000) Loss of connexin45 causes a cushion defect in early cardiogenesis. Development 127:3501–3512

    PubMed  CAS  Google Scholar 

  • Lee J, Engel W, Nayernia K (2006) Stem cell protein Piwil2 modulates expression of murine spermatogonial stem cell expressed genes. Mol Reprod Dev 73:173–179. doi:10.1002/mrd.20391

    Article  PubMed  CAS  Google Scholar 

  • Lomelí H, Ramos-Mejía V, Gertsenstein M, Lobe C, Nagy A (2000) Targeted insertion of Cre recombinase into the TNAP gene: excision in primordial germ cells. Genesis 26:116–117. doi:10.1002/(SICI)1526-968X(200002)26:2<116:AID-GENE4>3.0.CO;2-X

    Article  PubMed  Google Scholar 

  • Mok K-W, Mruk D, Lee W, Cheng C (2012) Spermatogonial stem cells alone are not sufficient to re-initiate spermatogenesis in the rat testis following adjudin-induced infertility. Int J Androl 35:86–101. doi:10.1111/j.1365-2605.2011.01183.x

    Article  PubMed  CAS  Google Scholar 

  • Nagano T, Suzuki F (1976) The postnatal development of the junctional complexes of the mouse Sertoli cells as revealed by freeze fracture. Anat Rec 185:403–417. doi:10.1002/ar.1091850403

    Article  PubMed  CAS  Google Scholar 

  • Nelles E, Bützler C, Jung D, Temme A, Gabriel H-D, Dahl U, Traub O, Stümpel F, Jungermann K, Zielasek J, Toyka K, Dermietzel R, Willecke K (1996) Defective propagation of signals generated by sympathetic nerve stimulation in the liver of connexin32-deficient mice. Proc Natl Acad Sci USA 93:9565–9570

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Armendariz E, Romano M, Luna J, Miranda C, Bennett M, Moreno A (1994) Characterization of gap junctions between pairs of Leydig cells from mouse testis. Am J Physiol 267:C570–C580

    Google Scholar 

  • Pérez-Armendariz EM, Lamoyi E, Mason JI, Cisneros-Armas D, Luu-The V, Bravo-Moreno JF (2001) Developmental regulation of connexin 43 expression in fetal mouse testicular cells. Anat Rec 264:237–246

    Google Scholar 

  • Pointis G, Segretain D (2005) Role of connexion-based gap junction channels in testis. Trends Endocrinol Metab 16:300–306. doi:org/10.1016/j.tem.2005.07.001

    Article  PubMed  CAS  Google Scholar 

  • Pozzi A, Risek B, Kiang DT, Gilula NB, Kumar NM (1995) Analysis of multiple gap junction gene products in the rodent and human mammary gland. Exp Cell Res 220:212–219. doi:org/10.1006/excr.1995.1308

    Article  PubMed  CAS  Google Scholar 

  • Reaume A, de Sousa P, Kulkarni S, Langille B, Zhu D, Davies T, Juneja S, Kidder G, Rossant J (1995) Cardiac malformation in neonatal mice lacking connexin43. Science 24:1831–1834. doi:10.1126/science.7892609

    Article  Google Scholar 

  • Risley M (2000) Connexin gene expression in seminiferous tubules of the Sprague-Dawley rat. Biol Reprod 62:748–754. doi:10.1095/biolreprod62.3.748

    Article  PubMed  CAS  Google Scholar 

  • Risley M, Tan I, Roy C, Sáez J (1992) Cell-, age- and stage-dependent distribution of connexin43 gap junctions in testes. J Cell Sci 103:81–96

    PubMed  CAS  Google Scholar 

  • Söhl G, Willecke K (2004) Gap junctions and the connexin protein family. Cardiovasc Res 62:228–232. doi:10.1016/j.cardiores.2003.11.013

    Article  PubMed  Google Scholar 

  • Sridharan S, Simon L, Meling D, Cyr D, Gutstein D, Fishman G, Guillou F, Cooke P (2007) Proliferation of adult sertoli cells following conditional knockout of the gap junctional protein GJA1 (Connexin 43) in mice. Biol Reprod 76:804–812. doi:10.1095/biolreprod.106.059212

    Article  PubMed  CAS  Google Scholar 

  • Tan I, Roy C, Sáez J, Sáez C, Paul D, Risley M (1996) Regulated assembly of Connexin33 and Connexin43 into rat sertoli cell gap junctions. Biol Reprod 54:1300–1310. doi:10.1095/biolreprod54.6.1300

    Article  PubMed  CAS  Google Scholar 

  • Theis M, Magin T, Plum A, Willecke K (2000) General or cell type-specific deletion and replacement of Connexin-coding DNA in the mouse. Methods 20:205–218. doi:10.1006/meth.1999.0938

    Article  PubMed  CAS  Google Scholar 

  • Theis M, de Wit C, Schlaeger T, Eckardt D, Krüger O, Döring B, Risau W, Deutsch U, Pohl U, Willecke K (2001) Endothelium-specific replacement of the connexin43 coding region by a lacZ reporter gene. Genesis 29:1–13. doi:10.1002/1526-968X(200101)29:1<1:AID-GENE1000>3.0.CO;2-0

    Article  PubMed  CAS  Google Scholar 

  • Yu Z, Guo R, Ge Y, Ma J, Guan J, Li S, Sun X, Xue S, Han D (2003) Gene expression profiles in different stages of mouse spermatogenic cells during spermatogenesis. Biol Reprod 69:37–47. doi:10.1095/biolreprod.102.012609

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank D. Schaefer and his crew at the Animal Facility, University of Marburg, Marburg, Germany, for their professional and noteworthy help with treatment of our transgenic mice, A. Hax (Giessen, Germany) and M. Gähle and S. J. Schultz (both Hannover, Germany) for their skilful technical assistance. We thank Professor K. Willecke (Institute of Genetics, University of Bonn, Germany) for the generous provision of the floxed Cx43-LacZ transgenic mice and finally Professor H. Lomelí (Department of Developmental Genetics and Molecular Physiology, Institute of Biotechnology, National Autonomous University of Mexico, Mexico) and Professor A. Nagy (Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Canada) for the permissive provision of the TNAP-Cre mice. The authors address special thanks to Dr. D. Carette and Professor J. Nagy for their data about Connexin antibodies. This work was supported by the DFG (BR 3365/2-1 and KFO 181/1) and by the AfT (Akademie für Tiergesundheit), Bonn, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Brehm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Günther, S., Fietz, D., Weider, K. et al. Effects of a murine germ cell-specific knockout of Connexin 43 on Connexin expression in testis and fertility. Transgenic Res 22, 631–641 (2013). https://doi.org/10.1007/s11248-012-9668-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-012-9668-1

Keywords

Navigation