Skip to main content
Log in

β integrin-like protein-mediated adhesion and its disturbances during cell cultivation of the mussel Mytilus trossulus

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In this study, we focus on the specific contribution of β integrin-like protein to adhesion-mediated events in molluscan larval cells in culture that could not have been investigated within the whole animal. An analysis of disturbances to cell–substratum adhesion, caused by the integrin receptor inhibiting Arg-Gly-Asp-Ser (RGDS)-peptide, the Ca2+/Mg2+-chelators and the stress influence of freezing–thawing, reveals that all these factors resulted in the partial destruction of the integrin–extracellular matrix (ECM) interaction in culture and, in particular, changes in the distribution and relative abundance of β integrin-positive cells. The experiments, carried out on selected substrates, found that β integrin-positive cells demonstrate different affinities for the substrates. This finding further supports the assumption that epithelial differentiation in cultivated cells of larval Mytilus may be mediated by β integrin-like proteins via binding to laminin; direct binding to other components of the ECM could not be demonstrated. The mussel β integrin-positive cells are not involved in myogenic or neuronal differentiation on any of the substrates but part of them has tubulin-positive cilia, forming some epithelia-like structures. Our data indicate that β integrin-positive cells are able to proliferate in vitro which suggests that they could participate in renewing the digestive epithelium in larvae. The findings provide evidence that the distribution pattern of β integrin-like protein depends on the cell type and the factors influencing the adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aota S, Yamada KM (1997) Integrin functions and signal transduction. Adv Exp Med Biol 400B:669–682

    CAS  PubMed  Google Scholar 

  • Bassim S, Tanguy A, Genard B, Moraga D, Tremblay R (2014) Identification of Mytilus edulis genetic regulators during early development. Gene 551(1):65–78

    Article  CAS  PubMed  Google Scholar 

  • Brower DL, Brower SM, Hayward DC, Ball EE (1997) Molecular evolution of integrins: genes encoding integrin beta subunits from a coral and a sponge. Proc Natl Acad Sci U S A 94:9182–9187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bunch TA, Brower DL (1992) Drosophila PS2 integrin mediates RGD-dependent cell-matrix interactions. Development 116:239–247

    CAS  PubMed  Google Scholar 

  • Burke RD (1999) Invertebrate integrins: structure, function, and evolution. Int Rev Cytol 191:257–284

    Article  CAS  PubMed  Google Scholar 

  • Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223:701–703

    Article  CAS  PubMed  Google Scholar 

  • Davids BJ, Yoshino TP (1998) Integrin-like RGD-dependent binding mechanism involved in the spreading response of circulating molluscan phagocytes. Dev Comp Immunol 22:39–53

    Article  CAS  PubMed  Google Scholar 

  • Davids BJ, Wu XJ, Yoshino TP (1999) Cloning of a beta integrin subunit cDNA from an embryonic cell line derived from the freshwater mollusc, Biomphalaria glabrata. Gene 228:213–223

    Article  CAS  PubMed  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  CAS  PubMed  Google Scholar 

  • Enomoto-Iwamoto M, Menko AS, Philp N, Boettiger D (1993) Evaluation of integrin molecules involved in substrate adhesion. Cell Adhes Commun 1:191–202

    Article  CAS  PubMed  Google Scholar 

  • Ewan R, Huxley-Jones J, Mould AP, Humphries MJ, Robertson DL, Boot-Handford RP (2005) The integrins of the urochordate Ciona intestinalis provide novel insights into the molecular evolution of the vertebrate integrin family. BMC Evol Biol 5:31

    Article  PubMed Central  PubMed  Google Scholar 

  • Hughes AL (2001) Evolution of the integrin alpha and beta protein families. J Mol Evol 52:63–72

    Article  CAS  PubMed  Google Scholar 

  • Humphries MJ (2000) Integrin structure. Biochem Soc Trans 28:311–339

    Article  CAS  PubMed  Google Scholar 

  • Humphries JE, Yoshino TP (2003) Cellular receptors and signal transduction in molluscan hemocytes: connections with the innate immune system of vertebrates. Integr Comp Biol 43:305–312

    Article  CAS  PubMed  Google Scholar 

  • Humphries JE, Elizondo L, Yoshino TP (2001) Protein kinase C regulation of cell spreading in the molluscan Biomphalaria glabrata embryonic (Bge) cell line. Biochim Biophys Acta 1540:243–252

    Article  CAS  PubMed  Google Scholar 

  • Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25

    Article  CAS  PubMed  Google Scholar 

  • Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    Article  CAS  PubMed  Google Scholar 

  • Hynes RO (2012) The evolution of metazoan extracellular matrix. J Cell Biol 196:671–679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lallier T, Deutzmann R, Perris R, Bronner-Fraser M (1994) Neural crest cell interactions with laminin: structural requirements and localization of the binding site for alpha 1 beta 1 integrin. Dev Biol 162:451–464

    Article  CAS  PubMed  Google Scholar 

  • Leitinger B, McDowall A, Stanley P, Hogg N (2000) The regulation of integrin function by Ca(2+). Biochim Biophys Acta 1498:91–98

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Calderwood DA, Ginsberg MH (2000) Integrin cytoplasmic domain-binding proteins. J Cell Sci 113(Pt 20):3563–3571

    CAS  PubMed  Google Scholar 

  • Lockyer AE, Spinks JN, Walker AJ, Kane RA, Noble LR, Rollinson D, Dias-Neto E, Jones CS (2007) Biomphalaria glabrata transcriptome: identification of cell-signalling, transcriptional control and immune-related genes from open reading frame expressed sequence tags (ORESTES). Dev Comp Immunol 31:763–782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Longhurst CM, Jennings LK (1998) Integrin-mediated signal transduction. Cell Mol Life Sci 54:514–526

    Article  CAS  PubMed  Google Scholar 

  • Maiorova MA, Dyachuk VA, Odintsova IA (2014) Localization of beta1 integrin and fibronectin during mussel development. In: Sarto-Jackson I, Callebaut W (eds) The 5th meeting of the European Society for Evolutionary Developmental Biology., Vienna, Austria, pp 337–338

  • Marsden M, Burke RD (1998) The betaL integrin subunit is necessary for gastrulation in sea urchin embryos. Dev Biol 203:134–148

    Article  CAS  PubMed  Google Scholar 

  • Menko AS, Boettiger D (1987) Occupation of the extracellular matrix receptor, integrin, is a control point for myogenic differentiation. Cell 51:51–57

    Article  CAS  PubMed  Google Scholar 

  • Miyazawa S, Azumi K, Nonaka M (2001) Cloning and characterization of integrin alpha subunits from the solitary ascidian, Halocynthia roretzi. J Immunol 166:1710–1715

    Article  CAS  PubMed  Google Scholar 

  • Odintsova NA, Khomenko AV (1991) Primary cell culture from embryos of the Japanese scallop Mizuchopecten yessoensis (Bivalvia). Cytotechnology 6:49–54

    Article  CAS  PubMed  Google Scholar 

  • Odintsova NA, Maiorova MA (2012) Localization of alphavbeta3-like integrin in cultivated larval cells of the mussel Mytilus trossulus during neuronal and muscle differentiation. J Mol Histol 43:449–459

    Article  CAS  PubMed  Google Scholar 

  • Odintsova NA, Dyachuk VA, Nezlin LP (2010) Muscle and neuronal differentiation in primary cell culture of larval Mytilus trossulus (Mollusca: Bivalvia). Cell Tissue Res 339:625–637

    Article  PubMed  Google Scholar 

  • Paredes E, Bellas J, Adams SL (2013) Comparative cryopreservation study of trochophore larvae from two species of bivalves: Pacific oyster (Crassostrea gigas) and Blue mussel (Mytilus galloprovincialis). Cryobiology 67:274–279

    Article  CAS  PubMed  Google Scholar 

  • Plows LD, Cook RT, Davies AJ, Walker AJ (2006) Integrin engagement modulates the phosphorylation of focal adhesion kinase, phagocytosis, and cell spreading in molluscan defence cells. Biochim Biophys Acta 1763:779–786

    Article  CAS  PubMed  Google Scholar 

  • Pytela R, Suzuki S, Breuss J, Erle DJ, Sheppard D (1994) Polymerase chain reaction cloning with degenerate primers: homology-based identification of adhesion molecules. Methods Enzymol 245:420–451

    Article  CAS  PubMed  Google Scholar 

  • Sastry SK, Lakonishok M, Thomas DA, Muschler J, Horwitz AF (1996) Integrin alpha subunit ratios, cytoplasmic domains, and growth factor synergy regulate muscle proliferation and differentiation. J Cell Biol 133:169–184

    Article  CAS  PubMed  Google Scholar 

  • Schenke-Layland K, Rhodes KE, Angelis E, Butylkova Y, Heydarkhan-Hagvall S, Gekas C, Zhang R, Goldhaber JI, Mikkola HK, Plath K, MacLellan WR (2008) Reprogrammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages. Stem Cells 26:1537–1546

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sharlaimova N, Shabelnikov S, Petukhova O (2014) Small coelomic epithelial cells of the starfish Asterias rubens L. that are able to proliferate in vivo and in vitro. Cell Tissue Res 356:83–95

  • Shattil SJ, Kim C, Ginsberg MH (2010) The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol 11:288–300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, Kuo A, Mitros T, Salamov A, Carpenter ML, Signorovitch AY, Moreno MA, Kamm K, Grimwood J, Schmutz J, Shapiro H, Grigoriev IV, Buss LW, Schierwater B, Dellaporta SL, Rokhsar DS (2008) The Trichoplax genome and the nature of placozoans. Nature 454:955–960

    Article  CAS  PubMed  Google Scholar 

  • Takada Y, Ye X, Simon S (2007) The integrins. Genome Biol 8:215

    Article  PubMed Central  PubMed  Google Scholar 

  • Terahara K, Takahashi KG, Mori K (2003) Apoptosis by RGD-containing peptides observed in hemocytes of the Pacific oyster, Crassostrea gigas. Dev Comp Immunol 27:521–528

    Article  CAS  PubMed  Google Scholar 

  • Terahara K, Takahashi KG, Mori K (2005) Pacific oyster hemocytes undergo apoptosis following cell-adhesion mediated by integrin-like molecules. Comp Biochem Physiol A 141:215–222

    Article  Google Scholar 

  • Terahara K, Takahashi KG, Nakamura A, Osada M, Yoda M, Hiroi T, Hirasawa M, Mori K (2006) Differences in integrin-dependent phagocytosis among three hemocyte subpopulations of the Pacific oyster “Crassostrea gigas”. Dev Comp Immunol 30:667–683

    Article  CAS  PubMed  Google Scholar 

  • Urbano JM, Dominguez-Gimenez P, Estrada B, Martin-Bermudo MD (2011) PS integrins and laminins: key regulators of cell migration during Drosophila embryogenesis. PLoS ONE 6:e23893

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshino TP, Bickham U, Bayne CJ (2013) Molluscan cells in culture: primary cell cultures and cell lines. Can J Zool. 91

  • Zhang K, Chen J (2012) The regulation of integrin function by divalent cations. Cell Adhes Migr 6:20–29

    Article  Google Scholar 

  • Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H, Xiong Z, Que H, Xie Y, Holland PW, Paps J, Zhu Y, Wu F, Chen Y, Wang J, Peng C, Meng J, Yang L, Liu J, Wen B, Zhang N, Huang Z, Zhu Q, Feng Y, Mount A, Hedgecock D, Xu Z, Liu Y, Domazet-Loso T, Du Y, Sun X, Zhang S, Liu B, Cheng P, Jiang X, Li J, Fan D, Wang W, Fu W, Wang T, Wang B, Zhang J, Peng Z, Li Y, Li N, Wang J, Chen M, He Y, Tan F, Song X, Zheng Q, Huang R, Yang H, Du X, Chen L, Yang M, Gaffney PM, Wang S, Luo L, She Z, Ming Y, Huang W, Zhang S, Huang B, Zhang Y, Qu T, Ni P, Miao G, Wang J, Wang Q, Steinberg CE, Wang H, Li N, Qian L, Zhang G, Li Y, Yang H, Liu X, Wang J, Yin Y, Wang J (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490:49–54

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the Russian Science Foundation (grant no. 14-14-00035). The work was performed at the “Far Eastern electron microscopy center” (A.V. Zhirmunsky Institute of Marine Biology, FEB RAS, Vladivostok, Russia). The authors express their thanks to Dr. A.V. Boroda and Dr. V.A. Dyachuk (A.V. Zhirmunsky Institute of Marine Biology, FEB RAS) for discussions and their help with experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelly A. Odintsova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maiorova, M.A., Odintsova, N.A. β integrin-like protein-mediated adhesion and its disturbances during cell cultivation of the mussel Mytilus trossulus . Cell Tissue Res 361, 581–592 (2015). https://doi.org/10.1007/s00441-015-2122-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-015-2122-y

Keywords

Navigation