Skip to main content
Log in

Circadian oscillators in the mouse brain: molecular clock components in the neocortex and cerebellar cortex

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The circadian timekeeper of the mammalian brain resides in the suprachiasmatic nucleus of the hypothalamus (SCN), and is characterized by rhythmic expression of a set of clock genes with specific 24-h daily profiles. An increasing amount of data suggests that additional circadian oscillators residing outside the SCN have the capacity to generate peripheral circadian rhythms. We have recently shown the presence of SCN-controlled oscillators in the neocortex and cerebellum of the rat. The function of these peripheral brain clocks is unknown, and elucidating this could involve mice with conditional cell-specific clock gene deletions. This prompted us to analyze the molecular clockwork of the mouse neocortex and cerebellum in detail. Here, by use of in situ hybridization and quantitative RT-PCR, we show that clock genes are expressed in all six layers of the neocortex and the Purkinje and granular cell layers of the cerebellar cortex of the mouse brain. Among these, Per1, Per2, Cry1, Arntl, and Nr1d1 exhibit circadian rhythms suggesting that local running circadian oscillators reside within neurons of the mouse neocortex and cerebellar cortex. The temporal expression profiles of clock genes are similar in the neocortex and cerebellum, but they are delayed by 5 h as compared to the SCN, suggestively reflecting a master–slave relationship between the SCN and extra-hypothalamic oscillators. Furthermore, ARNTL protein products are detectable in neurons of the mouse neocortex and cerebellum, as revealed by immunohistochemistry. These findings give reason to further pursue the physiological significance of circadian oscillators in the mouse neocortex and cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Actb:

Actin beta

ANOVA:

Analysis of variance

Arntl:

Aryl hydrocarbon receptor nuclear translocator-like, also known as Bmal1

Clock:

Circadian locomotor output cycles kaput

Cry1:

Cryptochrome 1

CT:

Circadian time (animals kept in constant darkness for two days and sacrificed in darkness)

Dbp:

D site of albumin promoter binding protein

Gapdh:

Glyceraldehyde-3-phosphate dehydrogenase

GFAP:

Glial fibrillary acidic protein

NeuN:

Neuronal nuclear antigen

Nr1d1:

Nuclear receptor subfamily 1 group D member 1, also known as Rev-ErbAlpha

Per1:

Period circadian clock 1

Per2:

Period circadian clock 2

qRT-PCR:

Quantitative real-time RT-PCR

ZT:

Zeitgeber time (animals sacrificed during the light–dark cycle)

References

  • Abe H, Honma S, Namihira M, Tanahashi Y, Ikeda M, Honma K (1998) Circadian rhythm and light responsiveness of bmal1 expression, a partner of mammalian clock gene clock, in the suprachiasmatic nucleus of rats. Neurosci Lett 258:93–96

    Article  CAS  PubMed  Google Scholar 

  • Abe H, Honma S, Namihira M, Masubuchi S, Honma K (2001) Behavioural rhythm splitting in the cs mouse is related to clock gene expression outside the suprachiasmatic nucleus. Eur J Neurosci 14:1121–1128

    Article  CAS  PubMed  Google Scholar 

  • Abe H, Honma S, Ohtsu H, Honma K (2004) Circadian rhythms in behavior and clock gene expressions in the brain of mice lacking histidine decarboxylase. Brain Res Mol Brain Res 124:178–187

    Article  CAS  PubMed  Google Scholar 

  • Akiyama M, Kirihara T, Takahashi S, Minami Y, Yoshinobu Y, Moriya T, Shibata S (1999) Modulation of mper1 gene expression by anxiolytic drugs in mouse cerebellum. Br J Pharmacol 128:1616–1622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Albrecht U, Sun ZS, Eichele G, Lee CC (1997) A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91:1055–1064

    Article  CAS  PubMed  Google Scholar 

  • Aller MI, Jones A, Merlo D, Paterlini M, Meyer AH, Amtmann U, Brickley S, Jolin HE, McKenzie AN, Monyer H, Farrant M, Wisden W (2003) Cerebellar granule cell cre recombinase expression. Genesis 36:97–103

    Article  CAS  PubMed  Google Scholar 

  • Antoch MP, Song EJ, Chang AM, Vitaterna MH, Zhao Y, Wilsbacher LD, Sangoram AM, King DP, Pinto LH, Takahashi JS (1997) Functional identification of the mouse circadian clock gene by transgenic bac rescue. Cell 89:655–667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bailey MJ, Coon SL, Carter DA, Humphries A, Kim JS, Shi Q, Gaildrat P, Morin F, Ganguly S, Hogenesch JB, Weller JL, Rath MF, Møller M, Baler R, Sugden D, Rangel ZG, Munson PJ, Klein DC (2009) Night/day changes in pineal expression of >600 genes: Central role of adrenergic/camp signaling. J Biol Chem 284:7606–7622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barski JJ, Dethleffsen K, Meyer M (2000) Cre recombinase expression in cerebellar purkinje cells. Genesis 28:93–98

    Article  CAS  PubMed  Google Scholar 

  • Borjigin J, Zhang LS, Calinescu AA (2012) Circadian regulation of pineal gland rhythmicity. Mol Cell Endocrinol 349:13–19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buhr ED, Yoo SH, Takahashi JS (2010) Temperature as a universal resetting cue for mammalian circadian oscillators. Science 330:379–385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buijs RM, Kalsbeek A (2001) Hypothalamic integration of central and peripheral clocks. Nat Rev Neurosci 2:521–526

    Article  CAS  PubMed  Google Scholar 

  • Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, Simon MC, Takahashi JS, Bradfield CA (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103:1009–1017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coogan AN, Papachatzaki MM, Clemens C, Baird A, Donev RM, Joosten J, Zachariou V, Thome J (2011) Haloperidol alters circadian clock gene product expression in the mouse brain. World J Biol Psychiatry 12:638–644

    Article  PubMed  Google Scholar 

  • Ebihara S, Marks T, Hudson DJ, Menaker M (1986) Genetic control of melatonin synthesis in the pineal gland of the mouse. Science 231:491–493

    Article  CAS  PubMed  Google Scholar 

  • Foulkes NS, Borjigin J, Snyder SH, Sassone-Corsi P (1996) Transcriptional control of circadian hormone synthesis via the crem feedback loop. Proc Natl Acad Sci USA 93:14140–14145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Franken P, Dijk DJ (2009) Circadian clock genes and sleep homeostasis. Eur J Neurosci 29:1820–1829

    Article  CAS  PubMed  Google Scholar 

  • Gorski JA, Talley T, Qiu M, Puelles L, Rubenstein JL, Jones KR (2002) Cortical excitatory neurons and glia, but not gabaergic neurons, are produced in the emx1-expressing lineage. J Neurosci 22:6309–6314

    CAS  PubMed  Google Scholar 

  • Green CB, Takahashi JS, Bass J (2008) The meter of metabolism. Cell 134:728–742

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guilding C, Piggins HD (2007) Challenging the omnipotence of the suprachiasmatic timekeeper: Are circadian oscillators present throughout the mammalian brain? Eur J Neurosci 25:3195–3216

    Article  PubMed  Google Scholar 

  • Guo H, Hong S, Jin XL, Chen RS, Avasthi PP, Tu YT, Ivanco TL, Li Y (2000) Specificity and efficiency of cre-mediated recombination in emx1-cre knock-in mice. Biochem Biophys Res Commun 273:661–665

    Article  CAS  PubMed  Google Scholar 

  • Hastings MH, Maywood ES, O’Neill JS (2008) Cellular circadian pacemaking and the role of cytosolic rhythms. Curr Biol 18:R805–R815

    Article  CAS  PubMed  Google Scholar 

  • Kalsbeek A, Fliers E (2013) Daily regulation of hormone profiles. Handb Exp Pharmacol 185–226

  • Kalsbeek A, Buijs RM, van Heerikhuize JJ, Arts M, van der Woude TP (1992) Vasopressin-containing neurons of the suprachiasmatic nuclei inhibit corticosterone release. Brain Res 580:62–67

    Article  CAS  PubMed  Google Scholar 

  • Kalsbeek A, Fliers E, Franke AN, Wortel J, Buijs RM (2000) Functional connections between the suprachiasmatic nucleus and the thyroid gland as revealed by lesioning and viral tracing techniques in the rat. Endocrinology 141:3832–3841

    Article  CAS  PubMed  Google Scholar 

  • Klitten LL, Rath MF, Coon SL, Kim JS, Klein DC, Møller M (2008) Localization and regulation of dopamine receptor d4 expression in the adult and developing rat retina. Exp Eye Res 87:471–477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li JZ, Bunney BG, Meng F, Hagenauer MH, Walsh DM, Vawter MP, Evans SJ, Choudary PV, Cartagena P, Barchas JD, Schatzberg AF, Jones EG, Myers RM, Watson SJ Jr, Akil H, Bunney WE (2013) Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proc Natl Acad Sci USA 110:9950–9955

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lim AS, Myers AJ, Yu L, Buchman AS, Duffy JF, De Jager PL, Bennett DA (2013) Sex difference in daily rhythms of clock gene expression in the aged human cerebral cortex. J Biol Rhythms 28:117–129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lopez-Molina L, Conquet F, Dubois-Dauphin M, Schibler U (1997) The dbp gene is expressed according to a circadian rhythm in the suprachiasmatic nucleus and influences circadian behavior. EMBO J 16:6762–6771

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, Ivanova G, Omura C, Mo S, Vitaterna MH, Lopez JP, Philipson LH, Bradfield CA, Crosby SD, JeBailey L, Wang X, Takahashi JS, Bass J (2010) Disruption of the clock components clock and bmal1 leads to hypoinsulinaemia and diabetes. Nature 466:627–631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mendoza J, Pevet P, Felder-Schmittbuhl MP, Bailly Y, Challet E (2010) The cerebellum harbors a circadian oscillator involved in food anticipation. J Neurosci 30:1894–1904

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto Y, Sancar A (1998) Vitamin b2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals. Proc Natl Acad Sci USA 95:6097–6102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Onishi H, Yamaguchi S, Yagita K, Ishida Y, Dong X, Kimura H, Jing Z, Ohara H, Okamura H (2002) Rev-erbalpha gene expression in the mouse brain with special emphasis on its circadian profiles in the suprachiasmatic nucleus. J Neurosci Res 68:551–557

    Article  CAS  PubMed  Google Scholar 

  • Pezuk P, Mohawk JA, Wang LA, Menaker M (2012) Glucocorticoids as entraining signals for peripheral circadian oscillators. Endocrinology 153:4775–4783

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U (2002) The orphan nuclear receptor rev-erbalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–260

    Article  CAS  PubMed  Google Scholar 

  • Prolo LM, Takahashi JS, Herzog ED (2005) Circadian rhythm generation and entrainment in astrocytes. J Neurosci 25:404–408

    Article  CAS  PubMed  Google Scholar 

  • Rath MF, Munoz E, Ganguly S, Morin F, Shi Q, Klein DC, Møller M (2006) Expression of the otx2 homeobox gene in the developing mammalian brain: Embryonic and adult expression in the pineal gland. J Neurochem 97:556–566

    Article  CAS  PubMed  Google Scholar 

  • Rath MF, Morin F, Shi Q, Klein DC, Møller M (2007) Ontogenetic expression of the otx2 and crx homeobox genes in the retina of the rat. Exp Eye Res 85:65–73

    Article  CAS  PubMed  Google Scholar 

  • Rath MF, Bailey MJ, Kim JS, Ho AK, Gaildrat P, Coon SL, Møller M, Klein DC (2009) Developmental and diurnal dynamics of pax4 expression in the mammalian pineal gland: Nocturnal down-regulation is mediated by adrenergic-cyclic adenosine 3′,5′-monophosphate signaling. Endocrinology 150:803–811

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rath MF, Rohde K, Møller M (2012) Circadian oscillations of molecular clock components in the cerebellar cortex of the rat. Chronobiol Int 29:1289–1299

    Article  CAS  PubMed  Google Scholar 

  • Rath MF, Rohde K, Fahrenkrug J, Møller M (2013) Circadian clock components in the rat neocortex: Daily dynamics, localization and regulation. Brain Struct Funct 218:551–562

    Article  CAS  PubMed  Google Scholar 

  • Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941

    Article  CAS  PubMed  Google Scholar 

  • Roseboom PH, Namboodiri MA, Zimonjic DB, Popescu NC, Rodriguez IR, Gastel JA, Klein DC (1998) Natural melatonin ‘knockdown’ in c57bl/6j mice: Rare mechanism truncates serotonin n-acetyltransferase. Brain Res Mol Brain Res 63:189–197

    Article  CAS  PubMed  Google Scholar 

  • Rovsing L, Clokie S, Bustos DM, Rohde K, Coon SL, Litman T, Rath MF, Møller M, Klein DC (2011) Crx broadly modulates the pineal transcriptome. J Neurochem 119:262–274

    Article  PubMed Central  PubMed  Google Scholar 

  • Sadacca LA, Lamia KA, deLemos AS, Blum B, Weitz CJ (2011) An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice. Diabetologia 54:120–124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schwartz MD, Nunez AA, Smale L (2004) Differences in the suprachiasmatic nucleus and lower subparaventricular zone of diurnal and nocturnal rodents. Neuroscience 127:13–23

    Article  CAS  PubMed  Google Scholar 

  • Segall LA, Amir S (2010) Glucocorticoid regulation of clock gene expression in the mammalian limbic forebrain. J Mol Neurosci 42:168–175

    Article  CAS  PubMed  Google Scholar 

  • Shearman LP, Zylka MJ, Weaver DR, Kolakowski LF Jr, Reppert SM (1997) Two period homologs: Circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 19:1261–1269

    Article  CAS  PubMed  Google Scholar 

  • Shearman LP, Zylka MJ, Reppert SM, Weaver DR (1999) Expression of basic helix-loop-helix/pas genes in the mouse suprachiasmatic nucleus. Neuroscience 89:387–397

    Article  CAS  PubMed  Google Scholar 

  • Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I, Zheng B, Kume K, Lee CC, van der Horst GT, Hastings MH, Reppert SM (2000) Interacting molecular loops in the mammalian circadian clock. Science 288:1013–1019

    Article  CAS  PubMed  Google Scholar 

  • Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci USA 69:1583–1586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun ZS, Albrecht U, Zhuchenko O, Bailey J, Eichele G, Lee CC (1997) Rigui, a putative mammalian ortholog of the drosophila period gene. Cell 90:1003–1011

    Article  CAS  PubMed  Google Scholar 

  • Thresher RJ, Vitaterna MH, Miyamoto Y, Kazantsev A, Hsu DS, Petit C, Selby CP, Dawut L, Smithies O, Takahashi JS, Sancar A (1998) Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses. Science 282:1490–1494

    Article  CAS  PubMed  Google Scholar 

  • Tousson E, Meissl H (2004) Suprachiasmatic nuclei grafts restore the circadian rhythm in the paraventricular nucleus of the hypothalamus. J Neurosci 24:2983–2988

    Article  CAS  PubMed  Google Scholar 

  • von Gall C, Lewy A, Schomerus C, Vivien-Roels B, Pevet P, Korf HW, Stehle JH (2000) Transcription factor dynamics and neuroendocrine signalling in the mouse pineal gland: A comparative analysis of melatonin-deficient c57bl mice and melatonin-proficient c3h mice. Eur J Neurosci 12:964–972

    Article  Google Scholar 

  • Vrang N, Larsen PJ, Møller M, Mikkelsen JD (1995) Topographical organization of the rat suprachiasmatic-paraventricular projection. J Comp Neurol 353:585–603

    Article  CAS  PubMed  Google Scholar 

  • Wakamatsu H, Yoshinobu Y, Aida R, Moriya T, Akiyama M, Shibata S (2001) Restricted-feeding-induced anticipatory activity rhythm is associated with a phase-shift of the expression of mper1 and mper2 mrna in the cerebral cortex and hippocampus but not in the suprachiasmatic nucleus of mice. Eur J Neurosci 13:1190–1196

    Article  CAS  PubMed  Google Scholar 

  • Westgate EJ, Cheng Y, Reilly DF, Price TS, Walisser JA, Bradfield CA, FitzGerald GA (2008) Genetic components of the circadian clock regulate thrombogenesis in vivo. Circulation 117:2087–2095

    Article  PubMed  Google Scholar 

  • Wisor JP, Pasumarthi RK, Gerashchenko D, Thompson CL, Pathak S, Sancar A, Franken P, Lein ES, Kilduff TS (2008) Sleep deprivation effects on circadian clock gene expression in the cerebral cortex parallel electroencephalographic differences among mouse strains. J Neurosci 28:7193–7201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto T, Nakahata Y, Soma H, Akashi M, Mamine T, Takumi T (2004) Transcriptional oscillation of canonical clock genes in mouse peripheral tissues. BMC Mol Biol 5:18

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang S, Wang K, Valladares O, Hannenhalli S, Bucan M (2007) Genome-wide expression profiling and bioinformatics analysis of diurnally regulated genes in the mouse prefrontal cortex. Genome Biol 8:R247

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang EE, Kay SA (2010) Clocks not winding down: Unravelling circadian networks. Nat Rev Mol Cell Biol 11:764–776

    Article  CAS  PubMed  Google Scholar 

  • Zheng B, Larkin DW, Albrecht U, Sun ZS, Sage M, Eichele G, Lee CC, Bradley A (1999) The mper2 gene encodes a functional component of the mammalian circadian clock. Nature 400:169–173

    Article  CAS  PubMed  Google Scholar 

  • Zheng B, Albrecht U, Kaasik K, Sage M, Lu W, Vaishnav S, Li Q, Sun ZS, Eichele G, Bradley A, Lee CC (2001) Nonredundant roles of the mper1 and mper2 genes in the mammalian circadian clock. Cell 105:683–694

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Lundbeck Foundation (R34-A3364 and R108-A10301 to M.F.R.; R67-A6494 to M.M.), the Danish Medical Research Council (271-09-0206 to M.F.R.) and the Simon Fougner Hartmann’s Family Foundation (to M.M.). We wish to thank Tine Thorup Mellergaard for expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin F. Rath.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 870 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rath, M.F., Rovsing, L. & Møller, M. Circadian oscillators in the mouse brain: molecular clock components in the neocortex and cerebellar cortex. Cell Tissue Res 357, 743–755 (2014). https://doi.org/10.1007/s00441-014-1878-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1878-9

Keywords

Navigation