Skip to main content

Advertisement

Log in

Formation and cultivation of medaka primordial germ cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Primordial germ cell (PGC) formation is pivotal for fertility. Mammalian PGCs are epigenetically induced without the need for maternal factors and can also be derived in culture from pluripotent stem cells. In egg-laying animals such as Drosophila and zebrafish, PGCs are specified by maternal germ plasm factors without the need for inducing factors. In these organisms, PGC formation and cultivation in vitro from indeterminate embryonic cells have not been possible. Here, we report PGC formation and cultivation in vitro from blastomeres dissociated from midblastula embryos (MBEs) of the fish medaka (Oryzias latipes). PGCs were identified by using germ-cell-specific green fluorescent protein (GFP) expression from a transgene under the control of the vasa promoter. Embryo perturbation was exploited to study PGC formation in vivo, and dissociated MBE cells were cultivated under various conditions to study PGC formation in vitro. Perturbation of somatic development did not prevent PGC formation in live embryos. Dissociated MBE blastomeres formed PGCs in the absence of normal somatic structures and of known inducing factors. Most importantly, under culture conditions conducive to stem cell derivation, some dissociated MBE blastomeres produced GFP-positive PGC-like cells. These GFP-positive cells contained genuine PGCs, as they expressed PGC markers and migrated into the embryonic gonad to generate germline chimeras. Our data thus provide evidence for PGC preformation in medaka and demonstrate, for the first time, that PGC formation and derivation can be obtained in culture from early embryos of medaka as a lower vertebrate model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

bFGF:

Basic fibroblast growth factor

BMP4:

Bone morphogenetic protein 4

dpc or hpc:

Day(s) or hour(s) post culture

dpf or hpf:

Day(s) or hour(s) post fertilization

ES cell:

Embryonic stem cell

FBS:

Fetal bovine serum

FS:

Fish serum from rainbow trout

GFP:

Green fluorescent protein

MBE:

Midblastula embryo

MEE:

Medaka embryo extract

PR:

Fusion between puromycin acetyltransferase and red fluorescent protein

PBS:

Phosphate-buffered saline

PBST:

Tween-20 (0.1%) in PBS

pPGC:

Presumptive primordial germ cell

RT-PCR:

Reverse transcription plus polymerase chain reaction

3′-UTR:

3′ Untranslated region

References

  • Aizawa K, Shimada A, Naruse K, Mitani H, Shima A (2003) The medaka midblastula transition as revealed by the expression of the paternal genome. Gene Expr Patterns 3:43–47

    Article  CAS  PubMed  Google Scholar 

  • Chourrout D (1982) Tetraploidy induced by heat shocks in the rainbow trout (Salmo gairdneri R.). Reprod Nutr Dev 22:569–574

    Article  CAS  PubMed  Google Scholar 

  • Clark A, Bodnar M, Fox M, Rodriquez R, Abeyta M, Firpo M, Pera R (2004) Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Stem Cells 22:169–179

    Article  CAS  PubMed  Google Scholar 

  • Ephrussi A, Lehmann R (1992) Induction of germ cell formation by oskar. Nature 358:387–392

    Article  CAS  PubMed  Google Scholar 

  • Extavour C, Akam M (2003) Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130:5869–5884

    Article  CAS  PubMed  Google Scholar 

  • Geijsen N, Horoschak M, Kim K, Gribnau J, Eggan K, Daley GQ (2004) Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 427:148–154

    Article  CAS  PubMed  Google Scholar 

  • Guan G, Yan Y, Chen T, Yi M, Ni H, Naruse K, Nagahama Y, Hong Y (2013) Nanos3 gene targeting in medaka ES cells. Int J Biol Sci 9:444–454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M (2011) Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146:519–532

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Ogushi S, Kurimoto K, Shimamoto S, Ohta H, Saitou M (2012) Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science 338:971–975

    Article  CAS  PubMed  Google Scholar 

  • Herpin A, Rohr S, Riedel D, Kluever N, Raz E, Schartl M (2007) Specification of primordial germ cells in medaka (Oryzias latipes). BMC Dev Biol 7:3

    Article  PubMed Central  PubMed  Google Scholar 

  • Hong N, Li M, Zeng Z, Yi M, Deng J, Gui J, Winkler C, Schartl M, Hong Y (2010) Accessibility of host cell lineages to medaka stem cells depends on genetic background and irradiation of recipient embryos. Cell Mol Life Sci 67:1189–1202

    Article  CAS  PubMed  Google Scholar 

  • Hong N, Chen S, Ge R, Song J, Yi M, Hong Y (2012) Interordinal chimera formation between medaka and zebrafish for analyzing stem cell differentiation. Stem Cells Dev 21:2333–2341

    Article  PubMed Central  PubMed  Google Scholar 

  • Hong Y, Schartl M (1996) Establishment and growth responses of early medaka (Oryzias latipes) embryonic cells in feeder layer-free culture. Mol Mar Biol Biotechnol 5:93–104

    CAS  Google Scholar 

  • Hong Y, Winkler C, Schartl M (1996) Pluripotency and differentiation of embryonic stem cell lines from the medakafish (Oryzias latipes). Mech Dev 60:33–44

    Article  CAS  PubMed  Google Scholar 

  • Hong Y, Chen S, Gui J, Schartl M (2004a) Retention of the developmental pluripotency in medaka embryonic stem cells after gene transfer and long-term drug selection for gene targeting in fish. Transgenic Res 13:41–50

    Article  CAS  PubMed  Google Scholar 

  • Hong Y, Liu T, Zhao H, Xu H, Wang W, Liu R, Chen T, Deng J, Gui J (2004b) Establishment of a normal medakafish spermatogonial cell line capable of sperm production in vitro. Proc Natl Acad Sci U S A 101:8011–8016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Houston DW, Zhang J, Maines JZ, Wasserman SA, King ML (1998) A Xenopus DAZ-like gene encodes an RNA component of germ plasm and is a functional homologue of Drosophila boule. Development 125:171–180

    CAS  PubMed  Google Scholar 

  • Hubner K, Fuhrmann G, Christenson LK, Kehler J, Reinbold R, De La Fuente R, Wood J, Strauss JF 3rd, Boiani M, Scholer HR (2003) Derivation of oocytes from mouse embryonic stem cells. Science 300:1251–1256

    Article  PubMed  Google Scholar 

  • Iwamatsu T (2004) Stages of normal development in the medaka Oryzias latipes. Mech Dev 121:605–618

    Article  CAS  PubMed  Google Scholar 

  • Johnson AD, Bachvarova RF, Drum M, Masi T (2001) Expression of axolotl DAZL RNA, a marker of germ plasm: widespread maternal RNA and onset of expression in germ cells approaching the gonad. Dev Biol 234:402–415

    Article  CAS  PubMed  Google Scholar 

  • Kawakami Y, Goto-Kazeto R, Saito T, Fujimoto T, Higaki S, Takahashi Y, Arai K, Yamaha E (2011) Generation of germ-line chimera zebrafish using primordial germ cells isolated from cultured blastomeres and cryopreserved embryoids. Int J Dev Biol 54:1493–1501

    Google Scholar 

  • Kawasaki T, Saito K, Sakai C, Shinya M, Sakai N (2012) Production of zebrafish offspring from cultured spermatogonial stem cells. Genes Cells 17:316–325

    Article  CAS  PubMed  Google Scholar 

  • Kee K, Angeles VT, Flores M, Nguyen HN, Reijo Pera RA (2009) Human DAZL, DAZ and BOULE genes modulate primordial germ-cell and haploid gamete formation. Nature 462:222–225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Knaut H, Pelegri F, Bohmann K, Schwarz H, Nusslein-Volhard C (2000) Zebrafish vasa RNA but not its protein is a component of the germ plasm and segregates asymmetrically before germline specification. J Cell Biol 149:875–888

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koprunner M, Thisse C, Thisse B, Raz E (2001) A zebrafish nanos-related gene is essential for the development of primordial germ cells. Genes Dev 15:2877–2885

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krovel AV, Olsen LC (2002) Expression of a vas::EGFP transgene in primordial germ cells of the zebrafish. Mech Dev 116:141–150

    Article  CAS  PubMed  Google Scholar 

  • Kurokawa H, Aoki Y, Nakamura S, Ebe Y, Kobayashi D, Tanaka M (2006) Time-lapse analysis reveals different modes of primordial germ cell migration in the medaka Oryzias latipes. Dev Growth Differ 48:209–221

    Article  PubMed  Google Scholar 

  • Lavoir MC van de, Diamond JH, Leighton PA, Mather-Love C, Heyer BS, Bradshaw R, Kerchner A, Hooi LT, Gessaro TM, Swanberg SE, Delany ME, Etches RJ (2006) Germline transmission of genetically modified primordial germ cells. Nature 441:766–769

  • Lavoir MC van de, Collarini EJ, Leighton PA, Fesler J, Lu DR, Harriman WD, Thiyagasundaram TS, Etches RJ (2012) Interspecific germline transmission of cultured primordial germ cells. PloS ONE 7:e35664

  • Lawson KA, Dunn NR, Roelen BA, Zeinstra LM, Davis AM, Wright CV, Korving JP, Hogan BL (1999) Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev 13:424–436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li M, Hong N, Xu H, Yi M, Li C, Gui J, Hong Y (2009) Medaka vasa is required for migration but not survival of primordial germ cells. Mech Dev 126:366–381

    Article  CAS  PubMed  Google Scholar 

  • Li M, Hong N, Gui J, Hong Y (2012) Medaka piwi is essential for primordial germ cell migration. Curr Mol Med 12:1040–1049

    Article  PubMed  Google Scholar 

  • Li Z (2009) Nanog in the twin fish models medaka and zebrafish: functional divergence or pleiotropy of vertebrate pluripotency gene. Doctoral thesis, National University of Singapore.

  • Li Z, Bhat N, Manali D, Wang D, Hong N, Yi M, Ge R, Hong Y (2011) Medaka cleavage embryos are capable of generating ES-like cell cultures. Int J Biol Sci 7:418–425

    Article  PubMed Central  PubMed  Google Scholar 

  • Nakaki F, Hayashi K, Ohta H, Kurimoto K, Yabuta Y, Saitou M (2013) Induction of mouse germ-cell fate by transcription factors in vitro. Nature 501:222–226

    Article  CAS  PubMed  Google Scholar 

  • Nieuwkoop PD, Sutasurya LA (1981) Primordial germ cells in the invertebrates: from epigenesis to preformation. Cambridge University Press, Cambridge

    Google Scholar 

  • Olsen LC, Aasland R, Fjose A (1997) A vasa-like gene in zebrafish identifies putative primordial germ cells. Mech Dev 66:95–105

    Article  CAS  PubMed  Google Scholar 

  • Panda RP, Barman HK, Mohapatra C (2011) Isolation of enriched carp spermatogonial stem cells from Labeo rohita testis for in vitro propagation. Theriogenology 76:241–251

    Article  CAS  PubMed  Google Scholar 

  • Rao F, Wang T, Li M, Li Z, Hong N, Zhao H, Yan Y, Lu W, Chen T, Wang W, Lim M, Yuan Y, Liu L, Zeng L, Wei Q, Guan G, Li C, Hong Y (2011) Medaka tert produces multiple variants with differential expression during differentiation in vitro and in vivo. Int J Biol Sci 7:426–439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raz E (2003) Primordial germ-cell development: the zebrafish perspective. Nat Rev Genet 4:690–700

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Sanchez AV, Camp E, Leal-Tassias A, Atkinson SP, Armstrong L, Diaz-Llopis M, Mullor JL (2010) Nanog regulates primordial germ cell migration through Cxcr4b. Stem Cells 28:1457–1464

    Article  CAS  PubMed  Google Scholar 

  • Sawatari E, Shikina S, Takeuchi T, Yoshizaki G (2007) A novel transforming growth factor-beta superfamily member expressed in gonadal somatic cells enhances primordial germ cell and spermatogonial proliferation in rainbow trout (Oncorhynchus mykiss). Dev Biol 301:266–275

    Article  CAS  PubMed  Google Scholar 

  • Seydoux G, Strome S (1999) Launching the germline in Caenorhabditis elegans: regulation of gene expression in early germ cells. Development 126:3275–3283

    CAS  PubMed  Google Scholar 

  • Shikina S, Yoshizaki G (2010) Improved in vitro culture conditions to enhance the survival, mitotic activity, and transplantability of rainbow trout type A spermatogonia. Biol Reprod 83:268–276

    Article  CAS  PubMed  Google Scholar 

  • Shinomiya A, Tanaka M, Kobayashi T, Nagahama Y, Hamaguchi S (2000) The vasa-like gene, olvas, identifies the migration path of primordial germ cells during embryonic body formation stage in the medaka, Oryzias latipes. Develop Growth Differ 42:317–326

    Article  CAS  Google Scholar 

  • Tam PP, Zhou SX (1996) The allocation of epiblast cells to ectodermal and germ-line lineages is influenced by the position of the cells in the gastrulating mouse embryo. Dev Biol 178:124–132

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Kinoshita M, Kobayashi D, Nagahama Y (2001) Establishment of medaka (Oryzias latipes) transgenic lines with the expression of green fluorescent protein fluorescence exclusively in germ cells: a useful model to monitor germ cells in a live vertebrate. Proc Natl Acad Sci U S A 98:2544–2549

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tilgner K, Atkinson SP, Golebiewska A, Stojkovic M, Lako M, Armstrong L (2008) Isolation of primordial germ cells from differentiating human embryonic stem cells. Stem Cells 26:3075–3085

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Manali D, Wang T, Bhat N, Hong N, Li Z, Wang L, Yan Y, Liu R, Hong Y (2011) Identification of pluripotency genes in the fish medaka. Int J Biol Sci 7:440–451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weidinger G, Stebler J, Slanchev K, Dumstrei K, Wise C, Lovell-Badge R, Thisse C, Thisse B, Raz E (2003) Dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival. Curr Biol 13:1429–1434

    Article  CAS  PubMed  Google Scholar 

  • Wong TT, Tesfamichael A, Collodi P (2013) Production of zebrafish offspring from cultured female germline stem cells. PloS One 8:e62660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wylie C (1999) Germ cells. Cell 96:165–174

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Gui J, Hong Y (2005) Differential expression of vasa RNA and protein during spermatogenesis and oogenesis in the gibel carp (Carassius auratus gibelio), a bisexually and gynogenetically reproducing vertebrate. Dev Dyn 233:872–882

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Li M, Gui J, Hong Y (2010) Fish germ cells. Sci China Life Sci 53:435–446

    Article  PubMed  Google Scholar 

  • Xu H, Li Z, Li M, Wang L, Hong Y (2009) Boule is present in fish and bisexually expressed in adult and embryonic germ cells of medaka. PloS One 4:e6097

    Article  PubMed Central  PubMed  Google Scholar 

  • Yan Y, Hong N, Chen T, Li M, Wang T, Guan G, Qiao Y, Chen S, Schartl M, Li CM, Hong Y (2013) p53 gene targeting by homologous recombination in fish ES cells. PLoS One 8:e59400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yi M, Hong N, Hong Y (2009) Generation of medaka fish haploid embryonic stem cells. Science 326:430–433

    Article  CAS  PubMed  Google Scholar 

  • Yi M, Hong N, Hong Y (2010) Derivation and characterization of haploid embryonic stem cell cultures in medaka fish. Nat Protoc 5:1418–1430

    Article  CAS  PubMed  Google Scholar 

  • Ying Y, Qi X, Zhao GQ (2001) Induction of primordial germ cells from murine epiblasts by synergistic action of BMP4 and BMP8B signaling pathways. Proc Natl Acad Sci U S A 98:7858–7862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoon C, Kawakami K, Hopkins N (1997) Zebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells. Development 124:3157–3165

    CAS  PubMed  Google Scholar 

  • Zhao H, Hong N, Lu W, Zeng H, Song J, Hong Y (2012) Fusion gene vectors allowing for simultaneous drug selection, cell labeling, and reporter assay in vitro and in vivo. Anal Chem 84:987–993

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank J. Deng for fish breeding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meisheng Yi or Yunhan Hong.

Additional information

This work was supported by grants to Y.H. from the National Research Foundation Singapore (grant NRF-CRP7-2010-03) and to M.Y. from the National Natural Science Foundation of China (grant 31271576).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

PGC formation in vivo is independent of somatic development. Vg embryos at the 1-cell stage were non-injected or injected with MOpw (an antisense morpholino oligo) and monitored for somatic and PGC development at 4 dpf. a, b Control embryo. c-g MOpw-injected embryos, showing PGC formation in the absence of somatic structures (red fluorescence attributable to the co-injected dye, ey eye, od oil droplet, pc pigment cell, gr gonad region). Bars 100 μm. (TIFF 6795 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Li, M., Hong, N. et al. Formation and cultivation of medaka primordial germ cells. Cell Tissue Res 357, 71–81 (2014). https://doi.org/10.1007/s00441-014-1867-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1867-z

Keywords

Navigation