Skip to main content
Log in

Fish germ cells

  • Article
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Fish, like many other animals, have two major cell lineages, namely the germline and soma. The germ-soma separation is one of the earliest events of embryonic development. Germ cells can be specifically labeled and isolated for culture and transplantation, providing tools for reproduction of endangered species in close relatives, such as surrogate production of trout in salmon. Haploid cell cultures, such as medaka haploid embryonic stem cells have recently been obtained, which are capable of mimicking sperm to produce fertile offspring, upon nuclear being directly transferred into normal eggs. Such fish originated from a mosaic oocyte that had a haploid meiotic nucleus and a transplanted haploid mitotic cell culture nucleus. The first semi-cloned fish is Holly. Here we review the current status and future directions of understanding and manipulating fish germ cells in basic research and reproductive technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ikenishi K. Germ plasm in Caenorhabditis elegans, Drosophila and Xenopus. Dev Growth Differ, 1998, 40: 1–10 9563905, 10.1046/j.1440-169X.1998.t01-4-00001.x, 1:CAS:528:DyaK1cXisFyrsLY%3D

    PubMed  Google Scholar 

  2. Braat A K, Speksnijder J E, Zivkovic D. Germ line development in fishes. Int J Dev Biol, 1999, 43: 745–760 10668983, 1:CAS:528:DC%2BD3cXhvFWmtr4%3D

    PubMed  Google Scholar 

  3. Gamo H. On the origin of germ cells and formation of gonad primordia in the medaka, Oryzias latipes. Japan J Zoo, 1961, 13: 9

    Google Scholar 

  4. Hamaguchi S. A light- and electron-microscopic study on the migration of primordial germ cells in the teleost, Oryzias latipes. Cell Tissue Res, 1982, 227: 139–151 7172206, 10.1007/BF00206337, 1:STN:280:DyaL3s%2FnslSmug%3D%3D

    PubMed  Google Scholar 

  5. You Y L, Lin D J, Su M. The formation of nuage in the oogenesis of the teleost Spiniba rbus caldwelli (Nichols). Acta Zool Sin, 2004, 50: 231–239

    Google Scholar 

  6. Strome S, Lehmann R. Germ versus soma decisions: lessons from flies and worms. Science, 2007, 316: 392–393 17446385, 10.1126/science.1140846, 1:CAS:528:DC%2BD2sXktlSku78%3D

    PubMed  Google Scholar 

  7. Chuma S, Hosokawa M, Tanaka T, et al. Ultrastructural characterization of spermatogenesis and its evolutionary conservation in the germline: Germinal granules in mammals. Mol Cell Endocrinol, 2009, 306: 17–23 19063939, 10.1016/j.mce.2008.11.009, 1:CAS:528:DC%2BD1MXms1ait70%3D

    PubMed  Google Scholar 

  8. Li M, Hong N, Xu H, et al. Medaka vasa is required for migration but not survival of primordial germ cells. Mech Dev, 2009, 126: 366–381 19249358, 10.1016/j.mod.2009.02.004, 1:CAS:528:DC%2BD1MXlslWqu7o%3D

    PubMed  Google Scholar 

  9. Yoon C, Kawakami K, Hopkins N. Zebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells. Development, 1997, 124: 3157–3165 9272956, 1:CAS:528:DyaK2sXlvVehs7Y%3D

    PubMed  Google Scholar 

  10. Houwing S, Kamminga LM, Berezikov E, et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell, 2007, 129: 69–82. 17418787, 10.1016/j.cell.2007.03.026, 1:CAS:528:DC%2BD2sXkvVeltL0%3D

    PubMed  Google Scholar 

  11. Strasser M J, Mackenzie N C, Dumstrei K, et al. Control over the morphology and segregation of Zebrafish germ cell granules during embryonic development. BMC Dev Biol, 2008, 8: 58 18507824, 10.1186/1471-213X-8-58, 1:CAS:528:DC%2BD1cXhtVWjs73L

    PubMed  PubMed Central  Google Scholar 

  12. Li W, Deng F, Wang H, et al. Germ cell-less expression in zebrafish embryos. Dev Growth Differ, 2006, 48: 333–338 16759283, 10.1111/j.1440-169X.2006.00868.x, 1:CAS:528:DC%2BD28XmvV2nt7k%3D

    PubMed  Google Scholar 

  13. Bontems F, Stein A, Marlow F, et al. Bucky ball organizes germ plasm assembly in zebrafish. Curr Biol, 2009, 19: 414–422 19249209, 10.1016/j.cub.2009.01.038, 1:CAS:528:DC%2BD1MXivVKitbk%3D

    PubMed  Google Scholar 

  14. Xu H, Li Z, Li M, et al. Boule is present in fish and bisexually expressed in adult and embryonic germ cells of medaka. PLoS One, 2009, 4: e6097 19564913, 10.1371/journal.pone.0006097, 1:CAS:528:DC%2BD1MXot1SnsL8%3D

    PubMed  PubMed Central  Google Scholar 

  15. Peng J X, Xie J L, Zhou L, et al. Evolutionary conservation of Dazl genomic organization and its continuous and dynamic distribution throughout germline development in gynogenetic gibel carp. J Exp Zool B Mol Dev Evol, 2009, 312: 855–871 19504540, 10.1002/jez.b.21301, 1:CAS:528:DC%2BD1MXhsFGmsLbL

    PubMed  Google Scholar 

  16. Xu H, Li M, Gui J, et al. Cloning and expression of medaka dazl during embryogenesis and gametogenesis. Gene Expr Patterns, 2007, 7: 332–338 16979959, 10.1016/j.modgep.2006.08.001, 1:CAS:528:DC%2BD28Xht12ksbvK

    PubMed  Google Scholar 

  17. Aoki Y, Nagao I, Saito D, et al. Temporal and spatial localization of three germline-specific proteins in medaka. Dev Dyn, 2008, 237: 800–807 18224712, 10.1002/dvdy.21448, 1:CAS:528:DC%2BD1cXktlKktr0%3D

    PubMed  Google Scholar 

  18. Koprunner M, Thisse C, Thisse B, et al. A zebrafish nanos-related gene is essential for the development of primordial germ cells. Genes Dev, 2001, 15: 2877–2885 11691838, 1:CAS:528:DC%2BD3MXotlalt70%3D

    PubMed  PubMed Central  Google Scholar 

  19. Draper B W, McCallum C M, Moens C B. nanos1 is required to maintain oocyte production in adult zebrafish. Dev Biol, 2007, 305: 589–598 17418113, 10.1016/j.ydbio.2007.03.007, 1:CAS:528:DC%2BD2sXkvFGlsbc%3D

    PubMed  PubMed Central  Google Scholar 

  20. Ramasamy S, Wang H, Quach H N, et al. Zebrafish Staufen1 and Staufen2 are required for the survival and migration of primordial germ cells. Dev Biol, 2006, 292: 393–406 16513105, 10.1016/j.ydbio.2006.01.014, 1:CAS:528:DC%2BD28Xjs1WqtLk%3D

    PubMed  Google Scholar 

  21. Liu L, Hong N, Xu H, et al. Medaka dead end encodes a cytoplasmic protein and identifies embryonic and adult germ cells. Gene Expr Patterns, 2009, 9: 541–548 19577665, 10.1016/j.gep.2009.06.008, 1:CAS:528:DC%2BD1MXhtFGqs7nI

    PubMed  Google Scholar 

  22. Weidinger G, Stebler J, Slanchev K, et al. Dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival. Curr Biol, 2003, 13: 1429–1434 12932328, 10.1016/S0960-9822(03)00537-2, 1:CAS:528:DC%2BD3sXmslentbg%3D

    PubMed  Google Scholar 

  23. Thorpe J L, Doitsidou M, Ho S Y, et al. Germ cell migration in zebrafish is dependent on HMGCoA reductase activity and prenylation. Dev Cell, 2004, 6: 295–302 14960282, 10.1016/S1534-5807(04)00032-2, 1:CAS:528:DC%2BD2cXhs1Slsr0%3D

    PubMed  Google Scholar 

  24. Schlueter P J, Sang X, Duan C, et al. Insulin-like growth factor receptor 1b is required for zebrafish primordial germ cell migration and survival. Dev Biol, 2007, 305: 377–387 17362906, 10.1016/j.ydbio.2007.02.015, 1:CAS:528:DC%2BD2sXksV2ksro%3D

    PubMed  PubMed Central  Google Scholar 

  25. Dumstrei K, Mennecke R, Raz E. Signaling pathways controlling primordial germ cell migration in zebrafish. J Cell Sci, 2004, 117: 4787–4795 15340012, 10.1242/jcs.01362, 1:CAS:528:DC%2BD2cXptVygurg%3D

    PubMed  Google Scholar 

  26. Doitsidou M, Reichman-Fried M, Stebler J, et al. Guidance of primordial germ cell migration by the chemokine SDF-1. Cell, 2002, 111: 647–659 12464177, 10.1016/S0092-8674(02)01135-2, 1:CAS:528:DC%2BD38XptlGrtbg%3D

    PubMed  Google Scholar 

  27. Knaut H, Werz C, Geisler R, et al. A zebrafish homologue of the chemokine receptor Cxcr4 is a germ-cell guidance receptor. Nature, 2003, 421: 279–282 12508118, 10.1038/nature01338, 1:CAS:528:DC%2BD3sXjsF2gtw%3D%3D

    PubMed  Google Scholar 

  28. Mich J K, Blaser H, Thomas N A, et al. Germ cell migration in zebrafish is cyclopamine-sensitive but Smoothened-independent. Dev Biol, 2009, 328: 342–354 19389352, 10.1016/j.ydbio.2009.01.036, 1:CAS:528:DC%2BD1MXktFahtrk%3D

    PubMed  PubMed Central  Google Scholar 

  29. Kuo M W, Wang S H, Chang J C, et al. A novel puf-A gene predicted from evolutionary analysis is involved in the development of eyes and primordial germ-cells. PLoS One, 2009, 4: e4980 19319195, 10.1371/journal.pone.0004980, 1:CAS:528:DC%2BD1MXktlajtb0%3D

    PubMed  PubMed Central  Google Scholar 

  30. Saga Y. Mouse germ cell development during embryogenesis. Curr Opin Genet Dev, 2008, 18: 337–341 18625315, 10.1016/j.gde.2008.06.003, 1:CAS:528:DC%2BD1cXht1KmtbfJ

    PubMed  Google Scholar 

  31. Kosaka K, Kawakami K, Sakamoto H, et al. Spatiotemporal localization of germ plasm RNAs during zebrafish oogenesis. Mech Dev, 2007, 124: 279–289 17293094, 10.1016/j.mod.2007.01.003, 1:CAS:528:DC%2BD2sXjtVahu7k%3D

    PubMed  Google Scholar 

  32. Pepling M E, Wilhelm J E, O’Hara A L, et al. Mouse oocytes within germ cell cysts and primordial follicles contain a Balbiani body. Proc Natl Acad Sci USA, 2007, 104: 187–192 17189423, 10.1073/pnas.0609923104, 1:CAS:528:DC%2BD2sXjt1Ojuw%3D%3D

    PubMed  PubMed Central  Google Scholar 

  33. Kobayashi H, Iwamatsu T. Development and fine structure of the yolk nucleus of previtellogenic oocytes in the medaka Oryzias latipes. Dev Growth Differ, 2000, 42: 623–631 11142684, 10.1046/j.1440-169x.2000.00546.x, 1:STN:280:DC%2BD3M3gtFaktg%3D%3D

    PubMed  Google Scholar 

  34. Knaut H, Pelegri F, Bohmann K, et al. Zebrafish vasa RNA but not its protein is a component of the germ plasm and segregates asymmetrically before germline specification. J Cell Biol, 2000, 149: 875–888 10811828, 10.1083/jcb.149.4.875, 1:CAS:528:DC%2BD3cXjtlKns78%3D

    PubMed  PubMed Central  Google Scholar 

  35. Theusch E V, Brown K J, Pelegri F. Separate pathways of RNA recruitment lead to the compartmentalization of the zebrafish germ plasm. Dev Biol, 2006, 292: 129–141 16457796, 10.1016/j.ydbio.2005.12.045, 1:CAS:528:DC%2BD28XjtFGmtL0%3D

    PubMed  Google Scholar 

  36. Shinomiya A, Tanaka M, Kobayashi T, et al. The vasa-like gene, olvas, identifies the migration path of primordial germ cells during embryonic body formation stage in the medaka, Oryzias latipes. Dev Growth Differ, 2000, 42: 317–326 10969731, 10.1046/j.1440-169x.2000.00521.x, 1:CAS:528:DC%2BD3cXmvVegsLw%3D

    PubMed  Google Scholar 

  37. Yoshizaki G, Sakatani S, Tominaga H, et al. Cloning and characterization of a vasa-like gene in rainbow trout and its expression in the germ cell lineage. Mol Reprod Dev, 2000, 55: 364–371 10694742, 10.1002/(SICI)1098-2795(200004)55:4<364::AID-MRD2>3.0.CO;2-8, 1:CAS:528:DC%2BD3cXhslOks7c%3D

    PubMed  Google Scholar 

  38. Xu H, Gui J, Hong Y. Differential expression of vasa RNA and protein during spermatogenesis and oogenesis in the gibel carp (Carassius auratus gibelio), a bisexually and gynogenetically reproducing vertebrate. Dev Dyn, 2005, 233: 872–882 15880437, 10.1002/dvdy.20410, 1:CAS:528:DC%2BD2MXmtFKgsL8%3D

    PubMed  Google Scholar 

  39. Aoki Y, Nakamura S, Ishikawa Y, et al. Expression and syntenic analyses of four nanos genes in medaka. Zool Sci, 2009, 26: 112–118 19341327, 10.2108/zsj.26.112, 1:CAS:528:DC%2BD1MXmslCis78%3D

    PubMed  Google Scholar 

  40. Chuma S, Hiyoshi M, Yamamoto A, et al. Mouse tudor repeat-1 (MTR-1) is a novel component of chromatoid bodies/nuages in male germ cells and forms a complex with snRNPs. Mech Dev, 2003, 120: 979–990 14550528, 10.1016/S0925-4773(03)00181-3, 1:CAS:528:DC%2BD3sXnvFShu7k%3D

    PubMed  Google Scholar 

  41. Yoshimizu T, Sugiyama N, De Felice M, et al. Germline-specific expression of the Oct-4/green fluorescent protein (GFP) transgene in mice. Dev Growth Differ, 1999, 41: 675–684 10646797, 10.1046/j.1440-169x.1999.00474.x, 1:CAS:528:DC%2BD3cXjvFyntg%3D%3D

    PubMed  Google Scholar 

  42. Kobayashi T, Yoshizaki G, Takeuchi Y, et al. Isolation of highly pure and viable primordial germ cells from rainbow trout by GFP-dependent flow cytometry. Mol Reprod Dev, 2004, 67: 91–100 14648879, 10.1002/mrd.20003, 1:CAS:528:DC%2BD3sXps1ems7g%3D

    PubMed  Google Scholar 

  43. Ciruna B, Weidinger G, Knaut H, et al. Production of maternalzygotic mutant zebrafish by germ-line replacement. Proc Natl Acad Sci USA, 2002, 99: 14919–14924 12397179, 10.1073/pnas.222459999, 1:CAS:528:DC%2BD38Xpt1yrtLs%3D

    PubMed  PubMed Central  Google Scholar 

  44. Saito T, Fujimoto T, Maegawa S, et al. Visualization of primordial germ cells in vivo using GFP-nos1 3’UTR mRNA. Int J Dev Biol, 2006, 50: 691–699 17051479, 10.1387/ijdb.062143ts, 1:CAS:528:DC%2BD2sXhsV2qt78%3D

    PubMed  Google Scholar 

  45. Herpin A, Rohr S, Riedel D, et al. Specification of primordial germ cells in medaka (Oryzias latipes). BMC Dev Biol, 2007, 7: 3 17217535, 10.1186/1471-213X-7-3, 1:CAS:528:DC%2BD2sXhvFCgtbo%3D

    PubMed  PubMed Central  Google Scholar 

  46. Ding D, Parkhurst S M, Halsell S R, et al. Hsp83 RNA localization during Drosophila oogenesis and embryogenesis. Mol Cell Biol, 1993, 13: 3773–3781 7684502, 1:CAS:528:DyaK3sXkvFWlu70%3D

    PubMed  PubMed Central  Google Scholar 

  47. Wolke U, Weidinger G, Koprunner M, et al. Multiple levels of posttranscriptional control lead to germ line-specific gene expression in the zebrafish. Curr Biol, 2002, 12: 289–294 11864568, 10.1016/S0960-9822(02)00679-6, 1:CAS:528:DC%2BD38XhslWgt7g%3D

    PubMed  Google Scholar 

  48. Mishima Y, Giraldez A J, Takeda Y, et al. Differential regulation of germline mRNAs in soma and germ cells by zebrafish miR-430. Curr Biol, 2006, 16: 2135–2142 17084698, 10.1016/j.cub.2006.08.086, 1:CAS:528:DC%2BD28XhtFOjtL%2FK

    PubMed  PubMed Central  Google Scholar 

  49. Rangan P, DeGennaro M, Lehmann R. Regulating gene expression in the Drosophila germ line. Cold Spring Harb Symp Quant Biol, 2008, 73: 1–8 19270081, 1:CAS:528:DC%2BD1MXos1ersbk%3D

    PubMed  Google Scholar 

  50. Hashimoto Y, Maegawa S, Nagai T, et al. Localized maternal factors are required for zebrafish germ cell formation. Dev Biol, 2004, 268: 152–161 15031112, 10.1016/j.ydbio.2003.12.013, 1:CAS:528:DC%2BD2cXitFKgu7o%3D

    PubMed  Google Scholar 

  51. Weidinger G, Wolke U, Koprunner M, et al. Regulation of zebrafish primordial germ cell migration by attraction towards an intermediate target. Development, 2002, 129: 25–36 11782398, 1:CAS:528:DC%2BD38XovVajtA%3D%3D

    PubMed  Google Scholar 

  52. Herpin A, Fischer P, Liedtke D, et al. Sequential SDF1a and b-induced mobility guides Medaka PGC migration. Dev Biol, 2008, 320: 319–327 18440502, 10.1016/j.ydbio.2008.03.030, 1:CAS:528:DC%2BD1cXpsVCku7s%3D

    PubMed  Google Scholar 

  53. Saffman E E, Lasko P. Germline development in vertebrates and invertebrates. Cell Mol Life Sci, 1999, 55: 1141–1163 10442094, 10.1007/s000180050363, 1:CAS:528:DyaK1MXks1Slt70%3D

    PubMed  Google Scholar 

  54. Santos A C, Lehmann R. Germ cell specification and migration in Drosophila and beyond. Curr Biol, 2004, 14: R578–589 15268881, 10.1016/j.cub.2004.07.018, 1:CAS:528:DC%2BD2cXmtVams70%3D

    PubMed  Google Scholar 

  55. Maufroid J P, Capuron A P. A demonstration of cellular interactions during the formation of mesoderm and primordial germ cells in Pleurodeles waltlii. Differentiation, 1985, 29: 20–24 4018456, 10.1111/j.1432-0436.1985.tb00287.x, 1:STN:280:DyaL2M3lvVOgsA%3D%3D

    PubMed  Google Scholar 

  56. Stebler J, Spieler D, Slanchev K, et al. Primordial germ cell migration in the chick and mouse embryo: the role of the chemokine SDF-1/CXCL12. Dev Biol, 2004, 272: 351–361 15282153, 10.1016/j.ydbio.2004.05.009, 1:CAS:528:DC%2BD2cXmt1CjsLw%3D

    PubMed  Google Scholar 

  57. Albert M, Peters A H. Genetic and epigenetic control of early mouse development. Curr Opin Genet Dev, 2009, 19: 113–121 19359161, 10.1016/j.gde.2009.03.004, 1:CAS:528:DC%2BD1MXlsVCqtbY%3D

    PubMed  Google Scholar 

  58. Wylie C. Germ cells. Cell, 1999, 96: 165–174 9988212, 10.1016/S0092-8674(00)80557-7, 1:CAS:528:DyaK1MXotlyrtg%3D%3D

    PubMed  Google Scholar 

  59. Raz E. Primordial germ-cell development: the zebrafish perspective. Nat Rev Genet, 2003, 4: 690–700 12951570, 10.1038/nrg1154, 1:CAS:528:DC%2BD3sXmvVWlsrk%3D

    PubMed  Google Scholar 

  60. Blaser H, Eisenbeiss S, Neumann M, et al. Transition from nonmotile behaviour to directed migration during early PGC development in zebrafish. J Cell Sci, 2005, 118: 4027–4038 16129886, 10.1242/jcs.02522, 1:CAS:528:DC%2BD2MXhtVOqtrzM

    PubMed  Google Scholar 

  61. Weidinger G, Wolke U, Koprunner M, et al. Identification of tissues and patterning events required for distinct steps in early migration of zebrafish primordial germ cells. Development, 1999, 126: 5295–5307 10556055, 1:CAS:528:DC%2BD3cXmtFOmug%3D%3D

    PubMed  Google Scholar 

  62. Kunwar P S, Lehmann R. Developmental biology: Germ-cell attraction. Nature, 2003, 421: 226–227 12529629, 10.1038/421226a, 1:CAS:528:DC%2BD3sXjsF2itw%3D%3D

    PubMed  Google Scholar 

  63. Mahabaleshwar H, Boldajipour B, Raz E. Killing the messenger: The role of CXCR7 in regulating primordial germ cell migration. Cell Adh Migr, 2008, 2: 69–70 19262101, 10.4161/cam.2.2.6027

    PubMed  PubMed Central  Google Scholar 

  64. Van Doren M, Broihier H T, Moore L A, et al. HMG-CoA reductase guides migrating primordial germ cells. Nature, 1998, 396: 466–469 9853754, 10.1038/24871, 1:CAS:528:DyaK1cXotVSitb4%3D

    PubMed  Google Scholar 

  65. Tanaka S S, Yamaguchi Y L, Tsoi B, et al. IFITM/Mil/fragilis family proteins IFITM1 and IFITM3 play distinct roles in mouse primordial germ cell homing and repulsion. Dev Cell, 2005, 9: 745–756 16326387, 10.1016/j.devcel.2005.10.010, 1:CAS:528:DC%2BD28XptV2i

    PubMed  Google Scholar 

  66. Molyneaux K A, Zinszner H, Kunwar P S, et al. The chemokine SDF1/CXCL12 and its receptor CXCR4 regulate mouse germ cell migration and survival. Development, 2003, 130: 4279–4286 12900445, 10.1242/dev.00640, 1:CAS:528:DC%2BD3sXnvVWnt7s%3D

    PubMed  Google Scholar 

  67. Ara T, Nakamura Y, Egawa T, et al. Impaired colonization of the gonads by primordial germ cells in mice lacking a chemokine, stromal cell-derived factor-1 (SDF-1). Proc Natl Acad Sci USA, 2003, 100: 5319–5323 12684531, 10.1073/pnas.0730719100, 1:CAS:528:DC%2BD3sXjs1yit70%3D

    PubMed  PubMed Central  Google Scholar 

  68. Slanchev K, Stebler J, de la Cueva-Mendez G, et al. Development without germ cells: The role of the germ line in zebrafish sex differentiation. Proc Natl Acad Sci USA, 2005, 102: 4074–4079 15728735, 10.1073/pnas.0407475102, 1:CAS:528:DC%2BD2MXis12jtrw%3D

    PubMed  PubMed Central  Google Scholar 

  69. Kim C H, Broxmeyer H E. In vitro behavior of hematopoietic progenitor cells under the influence of chemoattractants: stromal cell-derived factor-1, steel factor, and the bone marrow environment. Blood, 1998, 91: 100–110 9414273, 1:CAS:528:DyaK1cXms1Wr

    PubMed  Google Scholar 

  70. Staller P, Sulitkova J, Lisztwan J, et al. Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature, 2003, 425: 307–311 13679920, 10.1038/nature01874, 1:CAS:528:DC%2BD3sXntlWnsrk%3D

    PubMed  Google Scholar 

  71. Hernandez P A, Gorlin R J, Lukens J N, et al. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet, 2003, 34: 70–74 12692554, 10.1038/ng1149, 1:CAS:528:DC%2BD3sXjt1Ont7Y%3D

    PubMed  Google Scholar 

  72. Gui J F, Liang S C, Zhu L F. Preliminary confirmation of gynogenetic reproductive mode in artificially multiple tetraploid allogynogenetic silver crucial carp. Chinese Sci Bull, 1993, 38: 327–331

    Google Scholar 

  73. Wu N, Yue H M, Chen B, et al. Histone H2A has a novel variant in fish oocytes. Biol Reprod, 2009, 81: 275–283 19386992, 10.1095/biolreprod.108.074955, 1:CAS:528:DC%2BD1MXptVaitb4%3D

    PubMed  Google Scholar 

  74. Tajima A, Naito M, Yasuda Y, et al. Production of germ line chimera by transfer of primordial germ cells in the domestic chicken (Gallus domesticus). Theriogenology, 1993, 40: 509–519 16727334, 10.1016/0093-691X(93)90404-S, 1:STN:280:DC%2BD28zgtVSqtw%3D%3D

    PubMed  Google Scholar 

  75. Brinster R L, Zimmermann J W. Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci USA, 1994, 91: 11298–11302 7972053, 10.1073/pnas.91.24.11298, 1:CAS:528:DyaK2MXitlyku7s%3D

    PubMed  PubMed Central  Google Scholar 

  76. Honaramooz A, Megee S O, Dobrinski I. Germ cell transplantation in pigs. Biol Reprod, 2002, 66: 21–28 11751259, 10.1095/biolreprod66.1.21, 1:CAS:528:DC%2BD38Xht1ylsg%3D%3D

    PubMed  Google Scholar 

  77. Kang S J, Choi J W, Kim S Y, et al. Reproduction of wild birds via interspecies germ cell transplantation. Biol Reprod, 2008, 79: 931–937 18685127, 10.1095/biolreprod.108.069989, 1:CAS:528:DC%2BD1cXhtlSrtLvF

    PubMed  Google Scholar 

  78. Yoshizaki G, Takeuchi Y, Sakatani S, et al. Germ cell-specific expression of green fluorescent protein in transgenic rainbow trout under control of the rainbow trout vasa-like gene promoter. Int J Dev Biol, 2000, 44: 323–326 10853829, 1:CAS:528:DC%2BD3cXks1Sgur4%3D

    PubMed  Google Scholar 

  79. Okutsu T, Yano A, Nagasawa K, et al. Manipulation of fish germ cell: visualization, cryopreservation and transplantation. J Reprod Dev, 2006, 52: 685–693 17220596, 10.1262/jrd.18096

    PubMed  Google Scholar 

  80. Takeuchi Y, Higuchi K, Yatabe T, et al. Development of spermatogonial cell transplantation in Nibe croaker, Nibea mitsukurii (Perciformes, Sciaenidae). Biol Reprod, 2009, 81: 1055–63 19605788, 10.1095/biolreprod.109.077701, 1:CAS:528:DC%2BD1MXhsV2lt7vK

    PubMed  Google Scholar 

  81. Nagler J J, Cloud J G, Wheeler P A, et al. Testis transplantation in male rainbow trout (Oncorhynchus mykiss). Biol Reprod, 2001, 64: 644–646 11159368, 10.1095/biolreprod64.2.644, 1:CAS:528:DC%2BD3MXnsVOhtA%3D%3D

    PubMed  Google Scholar 

  82. Takeuchi Y, Yoshizaki G, Takeuchi T. Generation of live fry from intraperitoneally transplanted primordial germ cells in rainbow trout. Biol Reprod, 2003, 69: 1142–1149 12773413, 10.1095/biolreprod.103.017624, 1:CAS:528:DC%2BD3sXnsV2nsrs%3D

    PubMed  Google Scholar 

  83. Saito T, Goto-Kazeto R, Arai K, et al. Xenogenesis in teleost fish through generation of germ-line chimeras by single primordial germ cell transplantation. Biol Reprod, 2008, 78: 159–166 17901077, 10.1095/biolreprod.107.060038, 1:CAS:528:DC%2BD1cXlvVc%3D

    PubMed  Google Scholar 

  84. Okutsu T, Suzuki K, Takeuchi Y, et al. Testicular germ cells can colonize sexually undifferentiated embryonic gonad and produce functional eggs in fish. Proc Natl Acad Sci USA, 2006, 103: 2725–2729 16473947, 10.1073/pnas.0509218103, 1:CAS:528:DC%2BD28XksF2rtrc%3D

    PubMed  PubMed Central  Google Scholar 

  85. Fong C Y, Peh G S, Gauthaman K, et al. Separation of SSEA-4 and TRA-1-60 labelled undifferentiated human embryonic stem cells from a heterogeneous cell population using magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting (FACS). Stem Cell Rev Rep, 2009, 5: 72–80 10.1007/s12015-009-9054-4, 1:CAS:528:DC%2BD1MXmt1Sntbc%3D

    Google Scholar 

  86. Yano A, von Schalburg K, Cooper G, et al. Identification of a molecular marker for type A spermatogonia by microarray analysis using gonadal cells from pvasa-GFP transgenic rainbow trout (Oncorhynchus mykiss). Mol Reprod Dev, 2009, 76: 246–254 18646050, 10.1002/mrd.20947, 1:CAS:528:DC%2BD1MXit1Khs74%3D

    PubMed  Google Scholar 

  87. Matsui Y, Zsebo K, Hogan B L. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell, 1992, 70: 841–847 1381289, 10.1016/0092-8674(92)90317-6, 1:CAS:528:DyaK38XmtVGrtrw%3D

    PubMed  Google Scholar 

  88. van de Lavoir M C, Diamond J H, Leighton P A, et al. Germline transmission of genetically modified primordial germ cells. Nature, 2006, 441: 766–769 16760981, 10.1038/nature04831, 1:CAS:528:DC%2BD28XltlKqu78%3D

    PubMed  Google Scholar 

  89. Fan L, Moon J, Wong T T, et al. Zebrafish primordial germ cell cultures derived from vasa::RFP transgenic embryos. Stem Cells Dev, 2008, 17: 585–597 18576915, 10.1089/scd.2007.0178, 1:CAS:528:DC%2BD1cXnslKkt7Y%3D

    PubMed  PubMed Central  Google Scholar 

  90. Brinster R L. Germline stem cell transplantation and transgenesis. Science, 2002, 296: 2174–2176 12077400, 10.1126/science.1071607, 1:CAS:528:DC%2BD38XkvFGhsb4%3D

    PubMed  Google Scholar 

  91. Hofmann M C, Hess R A, Goldberg E, et al. Immortalized germ cells undergo meiosis in vitro. Proc Natl Acad Sci USA, 1994, 91: 5533–5537 8202522, 10.1073/pnas.91.12.5533, 1:STN:280:DyaK2c3mtFKhsg%3D%3D

    PubMed  PubMed Central  Google Scholar 

  92. Feng L X, Chen Y, Dettin L, et al. Generation and in vitro differentiation of a spermatogonial cell line. Science, 2002, 297: 392–395 12077424, 10.1126/science.1073162, 1:CAS:528:DC%2BD38Xls1CisLo%3D

    PubMed  Google Scholar 

  93. Guan K, Nayernia K, Maier L S, et al. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature, 2006, 440: 1199–1203 16565704, 10.1038/nature04697, 1:CAS:528:DC%2BD28XjvVGltbw%3D

    PubMed  Google Scholar 

  94. Hong Y, Winkler C, Schartl M. Pluripotency and differentiation of embryonic stem cell lines from the medakafish (Oryzias latipes). Mech Dev, 1996, 60: 33–44 9025059, 10.1016/S0925-4773(96)00596-5, 1:CAS:528:DyaK28Xnt1Oitrc%3D

    PubMed  Google Scholar 

  95. Hong Y, Winkler C, Schartl M. Production of medakafish chimeras from a stable embryonic stem cell line. Proc Natl Acad Sci USA, 1998, 95: 3679–3684 9520425, 10.1073/pnas.95.7.3679, 1:CAS:528:DyaK1cXitlKjtr0%3D

    PubMed  PubMed Central  Google Scholar 

  96. Ma C, Fan L, Ganassin R, et al. Production of zebrafish germ-line chimeras from embryo cell cultures. Proc Natl Acad Sci USA, 2001, 98: 2461–2466 11226261, 10.1073/pnas.041449398, 1:CAS:528:DC%2BD3MXhslKmsr0%3D

    PubMed  PubMed Central  Google Scholar 

  97. Chen S L, Sha Z X, Ye H Q, et al. Pluripotency and chimera competence of an embryonic stem cell line from the sea perch (Lateolabrax japonicus). Mar Biotechnol (NY), 2007, 9: 82–91 10.1007/s10126-006-6050-1, 1:CAS:528:DC%2BD2sXitlCrsb8%3D

    Google Scholar 

  98. Chen S L, Ren G C, Sha Z X, et al. Establishment of a continuous embryonic cell line from Japanese flounder Paralichthys olivaceus for virus isolation. Dis Aquat Organ, 2004, 60: 241–246 15521323, 10.3354/dao060241

    PubMed  Google Scholar 

  99. Yi M S, HONG N, Li Z D, et al. Medaka fish stem cells and their applications. Sci China Life Sci, 2010, 53: 426–434 10.1007/s11427-010-0079-3, 20596908

    PubMed  Google Scholar 

  100. Hong N, Li M, Zeng Z, et al. Accessibility of host cell lineages to medaka stem cells depends on genetic background and irradiation of recipient embryos. Cell Mol Life Sci. 2010, 10. [Epub ahead of print]PMID: 20063174

  101. Hong Y, Gui J, Chen S, et al. Embryonic stem cell in fish. Acta Hydrobiol Sin, 2003, 49: 14

    Google Scholar 

  102. Yi M, Hong N, Hong Y. Generation of medaka fish haploid embryonic stem cells. Science, 2009, 326: 4 10.1126/science.1175151, 1:CAS:528:DC%2BD1MXht1GgtLfI

    Google Scholar 

  103. Ramasamy R, Ricci J A, Palermo G D, et al. Successful fertility treatment for Klinefelter’s syndrome. J Urol, 2009, 182: 1108–1113 19616796, 10.1016/j.juro.2009.05.019, 1:CAS:528:DC%2BD1MXhtFWrt7zO

    PubMed  Google Scholar 

  104. Gurdon J B, Melton D A. Nuclear reprogramming in cells. Science, 2008, 322: 1811–1815 19095934, 10.1126/science.1160810, 1:CAS:528:DC%2BD1cXhsFSmtrbK

    PubMed  Google Scholar 

  105. Wakamatsu Y, Ju B, Pristyaznhyuk I, et al. Fertile and diploid nuclear transplants derived from embryonic cells of a small laboratory fish, medaka (Oryzias latipes). Proc Natl Acad Sci USA, 2001, 98: 1071–1076 11158596, 10.1073/pnas.98.3.1071, 1:CAS:528:DC%2BD3MXht1Smsb8%3D

    PubMed  PubMed Central  Google Scholar 

  106. Campbell K H, McWhir J, Ritchie W A, et al. Sheep cloned by nuclear transfer from a cultured cell line. Nature, 1996, 380: 64–66 8598906, 10.1038/380064a0, 1:CAS:528:DyaK28XhsFeisLY%3D

    PubMed  Google Scholar 

  107. Tsai M C, Takeuchi T, Bedford J M, et al. Alternative sources of gametes: reality or science fiction? Hum Reprod, 2000, 15: 988–998 10783340, 10.1093/humrep/15.5.988, 1:STN:280:DC%2BD3c3kslarsg%3D%3D

    PubMed  Google Scholar 

  108. Tesarik J. Reproductive semi-cloning respecting biparental embryo origin: embryos from syngamy between a gamete and a haploidized somatic cell. Hum Reprod, 2002, 17: 1933–1937 12151415, 10.1093/humrep/17.8.1933, 1:STN:280:DC%2BD38vgt1amtQ%3D%3D

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to JianFang Gui or YunHan Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Li, M., Gui, J. et al. Fish germ cells. Sci. China Life Sci. 53, 435–446 (2010). https://doi.org/10.1007/s11427-010-0058-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-0058-8

Keywords

Navigation