Skip to main content

Advertisement

Log in

TP53 status regulates ACSL5-induced expression of mitochondrial mortalin in enterocytes and colorectal adenocarcinomas

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Acyl-CoA synthetase 5 (ACSL5), a mitochondrially localized enzyme, catalyzes the synthesis of long-chain fatty acid thioesters and is physiologically involved in pro-apoptotic sensing of enterocytes. The aim of the present study is to identify an ACSL5-dependent regulation of mitochondrially expressed proteins and the characterization of related pathways in normal and diseased human intestinal mucosa. Proteomics of isolated mitochondria from ACSL5 transfectants and CaCo2 controls were performed. ACSL5-dependent protein synthesis was verified with quantitative reverse transcription plus the polymerase chain reaction, Western blotting, short-interfering-RNA-mediated gene silencing and additional cell culture experiments. Lipid changes were analyzed with tandem mass spectrometry. ACSL5-related pathways were characterized in normal mucosa and sporadic adenocarcinomas of the human intestine. In CaCo2 cells transfected with ACSL5, mortalin (HSPA9) was about two-fold increased in mitochondria, whereas cytoplasmic mortalin levels were unchanged. Disturbance of acyl-CoA/sphingolipid metabolism, induced by ACSL5 over-expression, was characterized as crucial. ACSL5-related over-expression of mitochondrial mortalin was found in HEK293 and Lovo (wild-type TP53 [tumor protein p53]) and CaCo2 (p53-negative; TP53 mutated) cells but not in Colo320DM cells (mutated TP53). In normal human intestinal mucosa, an increasing gradient of both ACSL5 and mortalin from bottom to top was observed, whereas p53 (wild-type TP53) decreased. In sporadic intestinal adenocarcinomas with strong p53 immunostaining (mutated TP53), ACSL5-related mortalin expression was heterogeneous. ACSL5-induced mitochondrial mortalin expression is assumed to be a stress response to ACSL5-related changes in lipid metabolism and is regulated by the TP53 status. Uncoupling of ACSL5 and mitochondrial mortalin by mutated TP53 could be important in colorectal carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Brown SL, Riehl TE, Walker MR, Geske MJ, Doherty JM, Stenson WF, Stappenbeck TS (2007) Myd88-dependent positioning of Ptgs2-expressing stromal cells maintains colonic epithelial proliferation during injury. J Clin Invest 117:258–269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bu SY, Mashek DG (2010) Hepatic long-chain acyl-CoA synthetase 5 mediates fatty acid channeling between anabolic and catabolic pathways. J Lipid Res 51:3270–3280

    Article  PubMed Central  PubMed  Google Scholar 

  • Chomczynski P (1993) A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15:532–537

    CAS  PubMed  Google Scholar 

  • Coleman RA, Lewin TM, Van Horn CG, Gonzalez-Baro MR (2002) Do long-chain acyl-CoA synthetases regulate fatty acid entry into synthetic versus degradative pathways? J Nutr 132:2123–2126

    CAS  PubMed  Google Scholar 

  • Czarnecka AM, Campanella C, Zummo G, Cappello F (2006) Mitochondrial chaperones in cancer: from molecular biology to clinical diagnostics. Cancer Biol Ther 5:714–720

    Article  CAS  PubMed  Google Scholar 

  • Deocaris CC, Kaul SC, Wadhwa R (2006) On the brotherhood of the mitochondrial chaperones mortalin and heat shock protein 60. Cell Stress Chaperones 11:116–128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Digel M, Ehehalt R, Stremmel W, Füllekrug J (2009) Acyl-CoA synthetases: fatty acid uptake and metabolic channeling. Mol Cell Biochem 326:23–28

    Article  CAS  PubMed  Google Scholar 

  • Drozdowski LA, Clandinin T, Thomson AB (2010) Ontogeny, growth and development of the small intestine: understanding pediatric gastroenterology. World J Gastroenterol 16:787–799

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dundas SR, Lawrie LC, Rooney PH, Murray GI (2005) Mortalin is over-expressed by colorectal adenocarcinomas and correlates with poor survival. J Pathol 205:74–81

    Article  CAS  PubMed  Google Scholar 

  • Ellis JM, Frahm JL, Li LO, Coleman RA (2010) Acyl-coenzyme A synthetases in metabolic control. Curr Opin Lipidol 21:212–217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Faergeman NJ, Knudsen J (1997) Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling. Biochem J 323:1–12

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fink L, Seeger W, Ermert L, Hänze J, Stahl U, Grimminger F, Kummer W, Bohle RM (1998) Real-time quantitative RT-PCR after laser-assisted cell picking. Nat Med 4:1329–1333

    Article  CAS  PubMed  Google Scholar 

  • Gassler N, Kopitz J, Tehrani A, Ottenwälder B, Schnölzer M, Kartenbeck J, Lyer S, Autschbach F, Poustka A, Otto HF, Mollenhauer J (2004) Expression of acyl-CoA synthetase 5 reflects the state of villus architecture in human small intestine. J Pathol 202:188–196

    Article  CAS  PubMed  Google Scholar 

  • Gassler N, Herr I, Schneider A, Penzel R, Langbein L, Schirmacher P, Kopitz J (2005) Impaired expression of acyl-CoA synthetase 5 in sporadic colorectal adenocarcinomas. J Pathol 207:295–300

    Article  CAS  PubMed  Google Scholar 

  • Gassler N, Newrzella D, Böhm C, Lyer S, Li L, Sorgenfrei O, Laer L van, Sido B, Mollenhauer J, Poustka A, Schirmacher P, Gretz N (2006) Molecular characterisation of non-absorptive and absorptive enterocytes in human small intestine. Gut 55:1084–1089

  • Gassler N, Roth W, Funke B, Schneider A, Herzog F, Tischendorf JJ, Grund K, Penzel R, Bravo IG, Mariadason J, Ehemann V, Sykora J, Haas TL, Walczak H, Ganten T, Zentgraf H, Erb P, Alonso A, Autschbach F, Schirmacher P, Knüchel R, Kopitz J (2007) Regulation of enterocyte apoptosis by acyl-CoA synthetase 5 splicing. Gastroenterology 133:587–598

    Article  CAS  PubMed  Google Scholar 

  • Gestl EE, Anne Böttger S (2012) Cytoplasmic sequestration of the tumor suppressor p53 by a heat shock protein 70 family member, mortalin, in human colorectal adenocarcinoma cell lines. Biochem Biophys Res Commun 423:411–416

    Article  CAS  PubMed  Google Scholar 

  • Görg A, Boguth G, Obermaier C, Posch A, Weiss W (1995) Two-dimensional polyacrylamide gel electrophoresis with immobilized pH gradients in the first dimension (IPG-Dalt): the state of the art and the controversy of vertical versus horizontal systems. Electrophoresis 16:1079–1086

    Article  PubMed  Google Scholar 

  • Gottlieb E, Vousden KH (2010) p53 regulation of metabolic pathways. Cold Spring Harb Perspect Biol 2:a001040

    Article  PubMed Central  PubMed  Google Scholar 

  • Gudkov AV, Komarova EA (2010) Pathologies associated with the p53 response. Cold Spring Harb Perspect Biol 2:a001180

    Article  PubMed Central  PubMed  Google Scholar 

  • Haynes CA, Allegood JC, Sims K, Wang EW, Sullards MC, Merrill AH Jr (2008) Quantitation of fatty acyl-coenzyme As in mammalian cells by liquid chromatography-electrospray ionization tandem mass spectrometry. J Lipid Res 49:1113–1125

  • Iosefson O, Azem A (2010) Reconstitution of the mitochondrial Hsp70 (mortalin)-p53 interaction using purified proteins—identification of additional interacting regions. FEBS Lett 584:1080–1084

    Article  CAS  PubMed  Google Scholar 

  • Jump DB (2008) N-3 polyunsaturated fatty acid regulation of hepatic gene transcription. Curr Opin Lipidol 19:242–247

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaul SC, Aida S, Yaguchi T, Kaur K, Wadhwa R (2005) Activation of wild type p53 function by its mortalin-binding, cytoplasmically localizing carboxyl terminus peptides. J Biol Chem 280:39373–39379

    Article  CAS  PubMed  Google Scholar 

  • Kaul SC, Deocaris CC, Wadhwa R (2007) Three faces of mortalin: a housekeeper, guardian and killer. Exp Gerontol 42:263–274

    Article  CAS  PubMed  Google Scholar 

  • Knudsen J, Neergaard TB, Gaigg B, Jensen MV, Hansen JK (2000) Role of acyl-CoA binding protein in acyl-CoA metabolism and acyl-CoA-mediated cell signaling. J Nutr 130:294S–298S

    CAS  PubMed  Google Scholar 

  • Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lewin TM, Kim JH, Granger DA, Vance JE, Coleman RA (2001) Acyl-CoA synthetase isoforms 1, 4, and 5 are present in different subcellular membranes in rat liver and can be inhibited independently. J Biol Chem 276:24674–24679

    Article  CAS  PubMed  Google Scholar 

  • Li LO, Klett EL, Coleman RA (2010) Acyl-CoA synthesis, lipid metabolism and lipotoxicity. Biochim Biophys Acta 1801:246–251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Y, Bodmer WF (2006) Analysis of p53 mutations and their expression in 56 colorectal cancer cell lines. Proc Natl Acad Sci U S A 103:976–981

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu WJ, Lee NP, Kaul SC, Lan F, Poon RT, Wadhwa R, Luk JM (2011) Mortalin-p53 interaction in cancer cells is stress dependent and constitutes a selective target for cancer therapy. Cell Death Differ 18:1046–1056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luo WI, Dizin E, Yoon T, Cowan JA (2010) Kinetic and structural characterization of human mortalin. Prot Exp Purific 72:75–81

    Article  CAS  Google Scholar 

  • Marcus K, Immler D, Sternberger J, Meyer HE (2000) Identification of platelet proteins separated by two-dimensional gel electrophoresis and analyzed by matrix assisted laser desorption/ionization-time of flight-mass spectrometry and detection of tyrosine-phosphorylated proteins. Electrophoresis 21:2622–2636

    Article  CAS  PubMed  Google Scholar 

  • Mashima T, Oh-hara T, Sato S, Mochizuki M, Sugimoto Y, Yamazaki K, Hamada J, Tada M, Moriuchi T, Ishikawa Y, Kato Y, Tomoda H, Yamori T, Tsuruo T (2005) p53-defective tumors with a functional apoptosome-mediated pathway: a new therapeutic target. J Natl Cancer Inst 97:765–777

    Article  CAS  PubMed  Google Scholar 

  • Mashima T, Sato S, Okabe S, Miyata S, Matsuura M, Sugimoto Y, Tsuruo T, Seimiya H (2009) Acyl-CoA synthetase as a cancer survival factor: its inhibition enhances the efficacy of etoposide. Cancer Sci 100:1556–1562

    Article  CAS  PubMed  Google Scholar 

  • Naccarati A, Polakova V, Pardini B, Vodickova L, Hemminki K, Kumar R, Vodicka P (2012) Mutations and polymorphisms in TP53 gene—an overview on the role in colorectal cancer. Mutagenesis 27:211–218

    Article  CAS  PubMed  Google Scholar 

  • Pinto D, Gregorieff A, Begthel H, Clevers H (2003) Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev 17:1709–1713

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ray RM, Bhattacharya S, Johnson LR (2011) Mdm2 inhibition induces apoptosis in p53 deficient human colon cancer cells by activating p73- and E2F1-mediated expression of PUMA and Siva-1. Apoptosis 16:35–44

    Article  CAS  PubMed  Google Scholar 

  • Reinartz A, Ehling J, Leue A, Liedtke C, Schneider U, Kopitz J, Weiss T, Hellerbrand C, Weiskirchen R, Knüchel R, Gassler N (2010) Lipid-induced up-regulation of human acyl-CoA synthetase 5 promotes hepatocellular apoptosis. Biochim Biophys Acta 1801:1025–1035

    Article  CAS  PubMed  Google Scholar 

  • Remmele W, Stegner HE (1987) Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue. Pathologe 8:138–140

    CAS  PubMed  Google Scholar 

  • Rozenberg P, Kocsis J, Saar M, Prohászka Z, Füst G, Fishelson Z (2013) Elevated levels of mitochondrial mortalin and cytosolic HSP70 in blood as risk factors in patients with colorectal cancer. Int J Cancer 133:514–518

    Article  CAS  PubMed  Google Scholar 

  • Russo A, Bazan V, Iacopetta B, Kerr D, Soussi T, Gebbia N (2005) The TP53 colorectal cancer international collaborative study on the prognostic and predictive significance of p53 mutation: influence of tumor site, type of mutation, and adjuvant treatment. J Clin Oncol 23:7518–7528

    Article  CAS  PubMed  Google Scholar 

  • Ruvolo PP (2003) Intracellular signal transduction pathways activated by ceramide audits metabolites. Pharmacol Res 47:383–392

    Article  CAS  PubMed  Google Scholar 

  • Sääf AM, Halbleib JM, Chen X, Yuen ST, Leung SY, Nelson WJ, Brown PO (2007) Parallels between global transcriptional programs of polarizing Caco-2 intestinal epithelial cells in vitro and gene expression programs in normal colon and colon cancer. Mol Biol Cell 18:4245–4260

    Article  PubMed Central  PubMed  Google Scholar 

  • Sampath H, Ntambi JM (2005) Polyunsaturated fatty acid regulation of genes of lipid metabolism. Annu Rev Nutr 25:317–340

    Article  CAS  PubMed  Google Scholar 

  • Saxena N, Katiyar SP, Liu Y, Grover A, Gao R, Sundar D, Kaul SC, Wadhwa R (2013) Molecular interactions of Bcl-2 and Bcl-xL with mortalin: identification and functional characterization. Biosci Rep 33:e00073

    Article  PubMed Central  PubMed  Google Scholar 

  • Schotte P, Criekinge W van, Van de Craen M, Loo G van, Desmedt M, Grooten J, Cornelissen M, De Ridder L, Vandekerckhove J, Fiers W, Vandenabeele P, Beyaert R (1998) Cathepsin B-mediated activation of the proinflammatory caspase-11. Biochem Biophys Res Commun 251:379–387

  • Shaner RL, Allegood JC, Park H, Wang E, Kelly S, Haynes CA, Sullards MC, Merrill AH Jr (2009) Quantitative analysis of sphingolipids for lipidomics using triple quadrupole and quadrupole linear ion trap mass spectrometers. J Lipid Res 50:1692–1707

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Soupene E, Kuypers FA (2008) Mammalian long-chain acyl-CoA synthetases. Exp Biol Med 233:507–521

    Article  CAS  Google Scholar 

  • Tong F, Black PN, Coleman RA, DiRusso CC (2006) Fatty acid transport by vectorial acylation in mammals: roles played by different isoforms of rat long-chain acyl-CoA synthetases. Arch Biochem Biophys 447:46–52

    Article  CAS  PubMed  Google Scholar 

  • Unger RH, Clark GO, Scherer PE, Orci L (2010) Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochim Biophys Acta 1801:209–214

    Article  CAS  PubMed  Google Scholar 

  • Van den Brink GR, Bleuming SA, Hardwick JC, Schepman BL, Offerhaus GJ, Keller JJ, Nielsen C, Gaffield W, Deventer SJ van, Roberts DJ, Peppelenbosch MP (2004) Indian hedgehog is an antagonist of Wnt signaling in colonic epithelial cell differentiation. Nat Genet 36:277–282

  • Van Es JH, Gijn ME van, Riccio O, Born M van den, Vooijs M, Begthel H, Cozijnsen M, Robine S, Winton DJ, Radtke F, Clevers H (2005) Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435:959–963

  • Wadhwa R, Taira K, Kaul SC (2002) An Hsp70 family chaperone, mortalin/ mthsp70/PBP74/Grp75: what, when, and where? Cell Stress Chaperones 7:309–316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wanders RJ, Ferdinandusse S, Brites P, Kemp S (2010) Peroxisomes, lipid metabolism and lipotoxicity. Biochim Biophys Acta 1801:272–280

    Article  CAS  PubMed  Google Scholar 

  • Yi X, Luk JM, Lee NP, Peng J, Leng X, Guan XY, Lau GK, Beretta L, Fan ST (2008) Association of mortalin (HSPA9) with liver cancer metastasis and prediction for early tumor recurrence. Mol Cell Proteomics 7:315–325

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to P. Akens for typing and proof-reading the manuscript. The great help of Dr. C. Henkel and S. Fiedler in preparation of protein gels and MALDI mass spectrometry and of D. Weisner in preparation of qRT-PCRs is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaus Gassler.

Additional information

Christina Klaus and Elke Kaemmerer contributed equally to this work.

None of the authors has any conflicts of interest.

This work was partially supported by the Deutsche Forschungsgemeinschaft (DFG GA 785/5-1) and Deutsche Krebshilfe (GA 109313).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klaus, C., Kaemmerer, E., Reinartz, A. et al. TP53 status regulates ACSL5-induced expression of mitochondrial mortalin in enterocytes and colorectal adenocarcinomas. Cell Tissue Res 357, 267–278 (2014). https://doi.org/10.1007/s00441-014-1826-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1826-8

Keywords

Navigation