Skip to main content

Advertisement

Log in

Glucocorticoid receptor antagonist and siRNA prevent senescence of human bone marrow mesenchymal stromal cells in vitro

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

We investigate the effects mediated by glucocorticoid (GC) receptor (GR) blockage by using RU486, a GR antagonist and GR short interfering RNA (GR siRNA) on the proliferative and differentiation capabilities of human bone marrow mesenchymal stromal/stem cells (MSCs) and on their senescence and antioxidant levels during extended in vitro culture. Treatment with either RU486 or GR siRNA for a 7-day period significantly increased the proliferation of MSCs and their osteogenic capabilities, as reflected by an increase in alkaline phosphatase (ALP) levels after differentiation. Following 4 weeks of treatment, MSCs improved or maintained their proliferation rates, whereas control MSCs exhibited decreased proliferation. Although all MSCs exhibited reduced osteogenic potential after 4 weeks of in vitro culture, the MSCs treated with GR inhibitors showed higher ALP levels than untreated MSCs on being subjected to osteogenic differentiation. Such treatment also significantly down-regulated the adipogenic capabilities of MSCs. Telomere lengths and the activities of telomerase and superoxide dismutase of MSCs treated with either RU486 or GR siRNA appeared to be higher than those detected in controls. These results demonstrate that the blockage of effects mediated by the GCs normally found in fetal bovine serum might postpone senescence of these cells by up-regulating their antioxidant levels. Our data suggest that the blocking of the effects mediated by GCs might extend the lifespan of endogenous MSCs in patients who have elevated GC levels as a consequence of advancing age or estrogen depletion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baksh D, Song L, Tuan RS (2004) Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 8:301–316

    Article  PubMed  CAS  Google Scholar 

  • Baltgalvis KA, Greising SM, Warren GL, Lowe DA (2010) Estrogen regulates estrogen receptors and antioxidant gene expression in mouse skeletal muscle. PLoS One 5:e10164

    Article  PubMed  Google Scholar 

  • Barry FP, Murphy JM (2004) Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36:568–584

    Article  PubMed  CAS  Google Scholar 

  • Brandl A, Meyer M, Bechmann V, Nerlich M, Angele P (2011) Oxidative stress induces senescence in human mesenchymal stem cells. Exp Cell Res 317:1541–1547

    Article  PubMed  CAS  Google Scholar 

  • Chen TL (2004) Inhibition of growth and differentiation of osteoprogenitors in mouse bone marrow stromal cell cultures by increased donor age and glucocorticoid treatment. Bone 35:83–95

    Article  PubMed  CAS  Google Scholar 

  • Costantini D, Marasco V, Møller AP (2011) A meta-analysis of glucocorticoids as modulators of oxidative stress in vertebrates. J Comp Physiol B 181:447–456

    PubMed  CAS  Google Scholar 

  • Dennis JE, Caplan AI (1993) Porous ceramic vehicles for rat-marrow-derived (Rattus norvegicus) osteogenic cell delivery: effects of pre-treatment with fibronectin or laminin. J Oral Implantol 19:106–115

    PubMed  CAS  Google Scholar 

  • Dennis JE, Caplan AI (1996) Differentiation potential of conditionally immortalized mesenchymal progenitor cells from adult marrow of a H-2Kb-tsA58 transgenic mouse. J Cell Physiol 167:523–538

    Article  PubMed  CAS  Google Scholar 

  • D’Ippolito G, Schiller PC, Ricordi C, Roos BA, Howard GA (1999) Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res 14:1115–1122

    Article  PubMed  Google Scholar 

  • Ebert R, Ulmer M, Zeck S, Meissner-Weigl J, Schneider D, Stopper H, Schupp N, Kassem M, Jakob F (2006) Selenium supplementation restores the antioxidative capacity and prevents cell damage in bone marrow stromal cells in vitro. Stem Cells 24:1226–1235

    Article  PubMed  CAS  Google Scholar 

  • Erickson IE, van Veen SC, Sengupta S, Kestle SR, Mauck RL (2011) Cartilage matrix formation by bovine mesenchymal stem cells in three-dimensional culture is age-dependent. Clin Orthop Relat Res 469:2744–2753

    Article  PubMed  Google Scholar 

  • Gil ME, Coetzer TL (2004) Real-time quantitative PCR of telomere length. Mol Biotechnol 27:169–172

    Article  PubMed  CAS  Google Scholar 

  • Ho JH, Chen YF, Ma WH, Tseng TC, Chen MH, Lee OK (2011) Cell contact accelerates replicative senescence of human mesenchymal stem cells independent of telomere shortening and p53 activation: roles of Ras and oxidative stress. Cell Transplant 20:1209–1220

    Article  PubMed  Google Scholar 

  • Hong L, Colpan A, Peptan IA (2006) Modulations of 17-beta estradiol on osteogenic and adipogenic differentiations of human mesenchymal stem cells. Tissue Eng 12:2747–2753

    Article  PubMed  CAS  Google Scholar 

  • Hong L, Wei N, Joshi V, Yu Y, Kim N, Krishnamachari Y, Zhang Q, Salem A (2012) Effects of glucocorticoid receptor siRNA delivered by poly lactic-co-glycolic acid microparticles on proliferation and differentiation capabilities of human mesenchymal stromal cells. Tissue Eng Part A 18:775–784

    Article  PubMed  CAS  Google Scholar 

  • Ichiyoshi H, Kiyozuka Y, Kishimoto Y, Fukuhara S, Tsubura A (2003) Massive telomere loss and telomerase RNA expression in dexamethasone-induced apoptosis in mouse thymocytes. Exp Mol Pathol 75:178–186

    Article  PubMed  CAS  Google Scholar 

  • Kasper G, Mao L, Geissler S, Draycheva A, Trippens J, Kühnisch J, Tschirschmann M, Kaspar K, Perka C, Duda GN, Klose J (2009) Insights into mesenchymal stem cell aging: involvement of antioxidant defense and actin cytoskeleton. Stem Cells 27:1288–1297

    Article  PubMed  CAS  Google Scholar 

  • Kim CH, Cheng SL, Kim GS (1999) Effects of dexamethasone on proliferation, activity, and cytokine secretion of normal human bone marrow stromal cells: possible mechanisms of glucocorticoid-induced bone loss. J Endocrinol 162:371–379

    Article  PubMed  CAS  Google Scholar 

  • Kizaki T, Ookawara T, Iwabuchi K, Onoé K, Day NK, Good RA, Maruyama N, Haga S, Matsuura N, Ohira Y, Ohno H (2000) Age-associated increase of basal corticosterone levels decreases ED2high, NF-kappaBhigh activated macrophages. J Leukoc Biol 68:21–30

    PubMed  CAS  Google Scholar 

  • Kolf CM, Cho E, Tuan RS (2007) Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther 9:204

    Article  PubMed  Google Scholar 

  • Kretlow JD, Jin YQ, Liu W, Zhang WJ, Hong TH, Zhou G, Baggett LS, Mikos AG, Cao Y (2008) Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells. BMC Cell Biol 9:60

    Article  PubMed  Google Scholar 

  • Manolagas SC (2010) From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev 31:266–300

    Article  PubMed  CAS  Google Scholar 

  • Mendes SC, Tibbe JM, Veenhof M, Both S, Oner FC, van Blitterswijk CA, de Bruijn JD (2004) Relation between in vitro and in vivo osteogenic potential of cultured human bone marrow stromal cells. J Mater Sci Mater Med 15:1123–1128

    Article  PubMed  CAS  Google Scholar 

  • Nakamura J, Yakata M (1984) Age- and sex-related differences in urinary cortisol level. Clin Chim Acta 14:77–80

    Google Scholar 

  • Nicolson N, Storms C, Ponds R, Sulon J (1997) Salivary cortisol levels and stress reactivity in human aging. J Gerontol A Biol Sci Med Sci 52:68–75

    Article  Google Scholar 

  • Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, Boggs SS, Greenberger JS, Goff JP (1999) Bone marrow as a potential source of hepatic oval cells. Science 284:1168–1170

    Article  PubMed  CAS  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  • Ray R, Novotny NM, Crisostomo PR, Lahm T, Abarbanell A, Meldrum DR (2008) Sex steroids and stem cell function. Mol Med 14:493–501

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez JP, Garat S, Gajardo H, Pino AM, Seitz G (1999) Abnormal osteogenesis in osteoporotic patients is reflected by altered mesenchymal stem cells dynamics. J Cell Biochem 75:414–423

    Article  PubMed  CAS  Google Scholar 

  • Vacanti V, Kong E, Suzuki G, Sato K, Canty JM, Lee T (2005) Phenotypic changes of adult porcine mesenchymal stem cells induced by prolonged passaging in culture. J Cell Physiol 205:194–201

    Article  PubMed  CAS  Google Scholar 

  • Venkataseshu GK, Estergreen VL Jr (1970) Cortisol and corticosterone in bovine plasma and the effect of adrenocorticotropin. J Dairy Sci 53:480–483

    Article  PubMed  CAS  Google Scholar 

  • Wagner W, Bork S, Horn P, Krunic D, Walenda T, Diehlmann A, Benes V, Blake J, Huber FX, Eckstein V, Boukamp P, Ho AD (2009) Aging and replicative senescence have related effects on human stem and progenitor cells. PLoS One 4:e5846

    Article  PubMed  Google Scholar 

  • Wen J, Wang L, Zhang M, Xie D, Sun L (2002) Repression of telomerase activity during in vitro differentiation of osteosarcoma cells. Cancer Invest 20:38–45

    Article  PubMed  CAS  Google Scholar 

  • White RE, Gerrity R, Barman SA, Han G (2010) Estrogen and oxidative stress: a novel mechanism that may increase the risk for cardiovascular disease in women. Steroids 75:788–793

    Article  PubMed  CAS  Google Scholar 

  • Woods NF, Mitchell ES, Smith-Dijulio K (2009) Cortisol levels during the menopausal transition and early postmenopause: observations from the Seattle Midlife Women's Health Study. Menopause 16:708–718

    Article  PubMed  Google Scholar 

  • Yu Y, Wei N, Stanford C, Schmidt T, Hong L (2012) In vitro effects of RU486 on proliferation and differentiation capabilities of human bone marrow mesenchymal stromal cells. Steroids 77:132–137

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Hong.

Additional information

This research was partially supported by the Start-up funding from the Dows Institute for Dental Research, College of Dentistry, University of Iowa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, N., Yu, Y., Joshi, V. et al. Glucocorticoid receptor antagonist and siRNA prevent senescence of human bone marrow mesenchymal stromal cells in vitro. Cell Tissue Res 354, 461–470 (2013). https://doi.org/10.1007/s00441-013-1700-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1700-0

Keywords

Navigation