Skip to main content
Log in

Learned helplessness: unique features and translational value of a cognitive depression model

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The concept of learned helplessness defines an escape or avoidance deficit after uncontrollable stress and is regarded as a depression-like coping deficit in aversive but avoidable situations. Based on a psychological construct, it ideally complements other stress-induced or genetic animal models for major depression. Because of excellent face, construct, and predictive validity, it has contributed to the elaboration of several pathophysiological concepts and has brought forward new treatment targets. Whereas learned helplessness can be modeled not only in a broad variety of mammals, but also in fish and Drosophila, we will focus here on the use of this model in rats and mice, which are today the most common species for preclinical in vivo research in psychiatry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramson LY, Seligman ME, Teasdale JD (1978) Learned helplessness in humans: critique and reformulation. J Abnorm Psychol 87:49–74

    Article  PubMed  CAS  Google Scholar 

  • Adrien J, Dugovic C, Martin P (1991) Sleep-wakefulness patterns in the helpless rat. Physiol Behav 49:257–262

    Article  PubMed  CAS  Google Scholar 

  • Alloy LB, Peterson C, Abramson LY, Seligman ME (1984) Attributional style and the generality of learned helplessness. J Pers Soc Psychol 46:681–687

    Article  PubMed  CAS  Google Scholar 

  • Amat J, Sparks PD, Matus-Amat P, Griggs J, Watkins LR, Maier SF (2001) The role of the habenular complex in the elevation of dorsal raphe nucleus serotonin and the changes in the behavioral responses produced by uncontrollable stress. Brain Res 917:118–126

    Article  PubMed  CAS  Google Scholar 

  • Amat J, Baratta MV, Paul E, Bland ST, Watkins LR, Maier SF (2005) Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nat Neurosci 8:365–371

    Article  PubMed  CAS  Google Scholar 

  • Anisman H, Merali Z (2001) Rodent models of depression: learned helplessness induced in mice. Curr Protoc Neurosci Chapter 8:Unit 8 10C

    PubMed  Google Scholar 

  • Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475:91–95

    Article  PubMed  CAS  Google Scholar 

  • Aznar S, Klein AB, Santini MA, Knudsen GM, Henn F, Gass P, Vollmayr B (2010) Aging and depression vulnerability interaction results in decreased serotonin innervation associated with reduced BDNF levels in hippocampus of rats bred for learned helplessness. Synapse 64:561–565

    Article  PubMed  CAS  Google Scholar 

  • Beurel E, Harrington LE, Jope RS (2013) Inflammatory T helper 17 cells promote depression-like behavior in mice. Biol Psychiatry 73:622-630

    Article  PubMed  CAS  Google Scholar 

  • Bland ST, Tamlyn JP, Barrientos RM, Greenwood BN, Watkins LR, Campeau S, Day HE, Maier SF (2007) Expression of fibroblast growth factor-2 and brain-derived neurotrophic factor mRNA in the medial prefrontal cortex and hippocampus after uncontrollable or controllable stress. Neuroscience 144:1219–1228

    Article  PubMed  CAS  Google Scholar 

  • Chourbaji S, Hellweg R, Brandis D, Zorner B, Zacher C, Lang UE, Henn FA, Hortnagl H, Gass P (2004) Mice with reduced brain-derived neurotrophic factor expression show decreased choline acetyltransferase activity, but regular brain monoamine levels and unaltered emotional behavior. Brain Res Mol Brain Res 121:28–36

    Article  PubMed  CAS  Google Scholar 

  • Chourbaji S, Zacher C, Sanchis-Segura C, Dormann C, Vollmayr B, Gass P (2005) Learned helplessness: validity and reliability of depressive-like states in mice. Brain Res Protocol 16:70–78

    Article  CAS  Google Scholar 

  • Chourbaji S, Urani A, Inta I, Sanchis-Segura C, Brandwein C, Zink M, Schwaninger M, Gass P (2006) IL-6 knockout mice exhibit resistance to stress-induced development of depression-like behaviors. Neurobiol Dis 23:587–594

    Article  PubMed  CAS  Google Scholar 

  • Chourbaji S, Brandwein C, Vogt MA, Dormann C, Hellweg R, Gass P (2008a) Nature vs. nurture: can enrichment rescue the behavioural phenotype of BDNF heterozygous mice? Behavioral Brain Research 192:254–258

    Article  CAS  Google Scholar 

  • Chourbaji S, Vogt MA, Fumagalli F, Sohr R, Frasca A, Brandwein C, Hörtnagl H, Riva MA, Sprengel R, Gass P (2008b) AMPA receptor subunit 1 (GluR-A) knockout mice model the glutamate hypothesis of depression. FASEB J 22:3129–3134

    Article  PubMed  CAS  Google Scholar 

  • Chourbaji S, Brandwein C, Gass P (2011) Altering BDNF expression by genetics and/or environment: impact for emotional and depression-like behaviour in laboratory mice. Neurosci Biobehav Rev 35:599–611

    Article  PubMed  CAS  Google Scholar 

  • Chourbaji S, Hörtnagl H, Molteni R, Riva MA, Gass P, Hellweg R (2012) The impact of environmental enrichment on sex-specific neurochemical circuitries—effects on brain-derived neurotrophic factor and the serotonergic system. Neuroscience 220:267–276

    Article  PubMed  CAS  Google Scholar 

  • Clark DA, Beck AT (2010) Cognitive theory and therapy of anxiety and depression: convergence with neurobiological findings. Trends Cogn Sci 14:418–424

    Article  PubMed  Google Scholar 

  • Drugan RC, Basile AS, Ha JH, Healy D, Ferland RJ (1997) Analysis of the importance of controllable versus uncontrollable stress on subsequent behavioral and physiological functioning. Brain Res Protocol 2:69–74

    Article  CAS  Google Scholar 

  • Duman RS, Heninger GR, Nestler EJ (1997) A molecular and cellular theory of depression. Arch Gen Psychiatry 54:597–606

    Article  PubMed  CAS  Google Scholar 

  • Enkel T, Gholizadeh D, von Bohlen und Halbach O, Sanchis-Segura C, Hurlemann R, Spanagel R, Gass P, Vollmayr B (2010) Ambiguous-cue interpretation is biased under stress- and depression-like states in rats. Neuropsychopharmacology 35:1008–1015

    Article  PubMed  Google Scholar 

  • Everaert J, Koster EH, Derakshan N (2012) The combined cognitive bias hypothesis in depression. Clin Psychol Rev 32:413–424

    Article  PubMed  Google Scholar 

  • Fava M, Kendler KS (2000) Major depressive disorder. Neuron 28:335–341

    Article  PubMed  CAS  Google Scholar 

  • Gass P, Reichardt HM, Strekalova T, Henn F, Tronche F (2001) Mice with targeted mutations of glucocorticoid and mineralocorticoid receptors: models for depression and anxiety? Physiol Behav 73:811–825

    Article  PubMed  CAS  Google Scholar 

  • Hamani C, Diwan M, Macedo CE, Brandao ML, Shumake J, Gonzalez-Lima F, Raymond R, Lozano AM, Fletcher PJ, Nobrega JN (2010) Antidepressant-like effects of medial prefrontal cortex deep brain stimulation in rats. Biol Psychiatry 67:117–124

    Article  PubMed  Google Scholar 

  • Hamani C, Mayberg H, Stone S, Laxton A, Haber S, Lozano AM (2011) The subcallosal cingulate gyrus in the context of major depression. Biol Psychiatry 69:301–308

    Article  PubMed  Google Scholar 

  • Henn FA, Vollmayr B (2004) Neurogenesis and depression: etiology or epiphenomenon? Biol Psychiatry 56:146–150

    Article  PubMed  Google Scholar 

  • Henn FA, Vollmayr B (2005) Stress models of depression: forming genetically vulnerable strains. Neurosci Biobehav Rev 29:799–804

    Article  PubMed  Google Scholar 

  • Henn FA, Edwards E, Anderson D, Vollmayr B (2002) Psychotherapy and antidepressant treatment of depression: evidence for similar neurobiological mechanisms. World Psychiatry 1:115–117

    PubMed  Google Scholar 

  • Holsboer F (2000) The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 23:477–501

    Article  PubMed  CAS  Google Scholar 

  • Ilango A, Shumake J, Wetzel W, Scheich H, Ohl FW (2012) The role of dopamine in the context of aversive stimuli with particular reference to acoustically signaled avoidance learning. Front Neurosci 6:132

    Article  PubMed  Google Scholar 

  • Insel TR, Sahakian BJ (2012) Drug research: a plan for mental illness. Nature 483:269

    Article  PubMed  CAS  Google Scholar 

  • Jackson RL, Maier SF, Coon DJ (1979) Long-term analgesic effects of inescapable shock and learned helplessness. Science 206:91–93

    Article  PubMed  CAS  Google Scholar 

  • Jackson RL, Alexander JH, Maier SF (1980) Learned helplessness, inactivity, and associative deficits: effects of inescapable shock on response choice escape learning. J Exp Psychol Anim Behav Process 6:1–20

    Article  PubMed  CAS  Google Scholar 

  • Jacobs BL, Praag H van, Gage FH (2000) Adult brain neurogenesis and psychiatry: a novel theory of depression. Mol Psychiatry 5:262–269

    Google Scholar 

  • Kellendonk C, Gass P, Kretz O, Schutz G, Tronche F (2002) Corticosteroid receptors in the brain: gene targeting studies. Brain Res Bull 57:73–83

    Article  PubMed  CAS  Google Scholar 

  • Lachman HM, Papolos DF, Boyle A, Sheftel G, Juthani M, Edwards E, Henn FA (1993) Alterations in glucocorticoid inducible RNAs in the limbic system of learned helpless rats. Brain Res 609:110–116

    Article  PubMed  CAS  Google Scholar 

  • Lazarus RS (1966) Psychological stress and the coping process. McGraw-Hill, New York

    Google Scholar 

  • Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, Aghajanian G, Duman RS (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329:959–964

    Article  PubMed  CAS  Google Scholar 

  • MacLennan AJ, Drugan RC, Hyson RL, Maier SF, Madden J 4th, Barchas JD (1982) Corticosterone: a critical factor in an opioid form of stress-induced analgesia. Science 215:1530–1532

    Article  PubMed  CAS  Google Scholar 

  • MacQueen GM, Ramakrishnan K, Croll SD, Siuciak JA, Yu G, Young LT, Fahnestock M (2001) Performance of heterozygous brain-derived neurotrophic factor knockout mice on behavioral analogues of anxiety, nociception, and depression. Behav Neurosci 115:1145–1153

    Article  PubMed  CAS  Google Scholar 

  • Maeng S, Zarate CA Jr, Du J, Schloesser RJ, McCammon J, Chen G, Manji HK (2008) Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 63:349–352

    Article  PubMed  CAS  Google Scholar 

  • Maier SF (1984) Learned helplessness and animal models of depression. Prog Neuropsychopharmacol Biol Psychiatry 8:435–446

    PubMed  CAS  Google Scholar 

  • Maier SF, Testa TJ (1975) Failure to learn to escape by rats previously exposed to inescapable shock is partly produced by associative interference. J Comp Physiol Psychol 88:554–564

    Article  Google Scholar 

  • McEwen BS (2012) Brain on stress: how the social environment gets under the skin. Proc Natl Acad Sci USA 109(Suppl 2):17180–17185

    Article  PubMed  CAS  Google Scholar 

  • Musty RE, Jordan MP, Lenox RH (1990) Criterion for learned helplessness in the rat: a redefinition. Pharmacol Biochem Behav 36:739–744

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ, Hyman SE (2010) Animal models of neuropsychiatric disorders. Nat Neurosci 13:1161–1169

    Article  PubMed  CAS  Google Scholar 

  • O’Leary OF, Cryan JF (2013) Towards translational rodent models of depression. Cell Tissue Res. doi:10.1007/s00441-013-1587-9

  • Okamoto H, Agetsuma M, Aizawa H (2012) Genetic dissection of the zebrafish habenula, a possible switching board for selection of behavioral strategy to cope with fear and anxiety. Dev Neurobiol 72:386–394

    Article  PubMed  Google Scholar 

  • Overmier JB, Seligman ME (1967) Effects of inescapable shock upon subsequent escape and avoidance responding. J Comp Physiol Psychol 63:28–33

    Article  PubMed  CAS  Google Scholar 

  • Raps CS, Peterson C, Reinhard KE, Abramson LY, Seligman ME (1982) Attributional style among depressed patients. J Abnorm Psychol 91:102–108

    Article  PubMed  CAS  Google Scholar 

  • Reichardt HM, Kaestner KH, Wessely O, Gass P, Schmid W, Schutz G (1998) Analysis of glucocorticoid signalling by gene targeting. J Steroid Biochem Mol Biol 65:111–115

    Article  PubMed  CAS  Google Scholar 

  • Richter SH, Schick A, Hoyer C, Lankisch K, Gass P, Vollmayr B (2012) A glass full of optimism: enrichment effects on cognitive bias in a rat model of depression. Cogn Affect Behav Neurosci 12:527–542

    Article  PubMed  Google Scholar 

  • Ridder S, Chourbaji S, Hellweg R, Urani A, Zacher C, Schmid W, Zink M, Hortnagl H, Flor H, Henn FA, Schutz G, Gass P (2005) Mice with genetically altered glucocorticoid receptor expression show altered sensitivity for stress-induced depressive reactions. J Neurosci 25:6243–6250

    Article  PubMed  CAS  Google Scholar 

  • Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, Niederehe G, Thase ME, Lavori PW, Lebowitz BD, McGrath PJ, Rosenbaum JF, Sackeim HA, Kupfer DJ, Luther J, Fava M (2006) Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry 163:1905–1917

    Article  PubMed  Google Scholar 

  • Ryan BK, Vollmayr B, Klyubin I, Gass P, Rowan MJ (2010) Persistent inhibition of hippocampal long-term potentiation in vivo by learned helplessness stress. Hippocampus 20:758–767

    Article  PubMed  CAS  Google Scholar 

  • Sanchis-Segura C, Spanagel R, Henn FA, Vollmayr B (2005) Reduced sensitivity to sucrose in rats bred for helplessness: a study using the matching law. Behav Pharmacol 16:267–270

    Article  PubMed  CAS  Google Scholar 

  • Sartorius A, Meyer-Lindenberg A (2009) Deep brain stimulation of the lateral habenula to treat depression. Front Neurosci 3:272

    Google Scholar 

  • Sartorius A, Vollmayr B, Neumann-Haefelin C, Ende G, Hoehn M, Henn FA (2003) Specific creatine rise in learned helplessness induced by electroconvulsive shock treatment. Neuroreport 14:2199–2201

    Article  PubMed  CAS  Google Scholar 

  • Sartorius A, Mahlstedt MM, Vollmayr B, Henn FA, Ende G (2007) Elevated spectroscopic glutamate/gamma-amino butyric acid in rats bred for learned helplessness. Neuroreport 18:1469–1473

    Article  PubMed  CAS  Google Scholar 

  • Sartorius A, Kiening KL, Kirsch P, Gall CC von, Haberkorn U, Unterberg AW, Henn FA, Meyer-Lindenberg A (2010) Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient. Biol Psychiatry 67:e9–e11

    Google Scholar 

  • Schulte-Herbrüggen O, Chourbaji S, Muller H, Danker-Hopfe H, Brandwein C, Gass P, Hellweg R (2006a) Differential regulation of nerve growth factor and brain-derived neurotrophic factor in a mouse model of learned helplessness. Exp Neurol 202:404–409

    Article  PubMed  Google Scholar 

  • Schulte-Herbrüggen O, Chourbaji S, Ridder S, Brandwein C, Gass P, Hörtnagl H, Hellweg R (2006b) Stress-resistant mice overexpressing glucocorticoid receptors display enhanced BDNF in the amygdala and hippocampus with unchanged NGF and serotonergic function. Psychoneuroendocrinology 31:1266–1277

    Article  PubMed  Google Scholar 

  • Schulte-Herbrüggen O, Hellweg R, Chourbaji S, Ridder S, Brandwein C, Gass P, Hörtnagl H (2007) Differential regulation of neurotrophins and serotonergic function in mice with genetically reduced glucocorticoid receptor expression. Exp Neurol 204:307–316

    Article  PubMed  Google Scholar 

  • Seligman ME, Maier SF (1967) Failure to escape traumatic shock. J Exp Psychol 74:1–9

    Article  PubMed  CAS  Google Scholar 

  • Seligman ME, Maier SF, Geer JH (1968) Alleviation of learned helplessness in the dog. J Abnorm Psychol 73:256–262

    Article  PubMed  CAS  Google Scholar 

  • Seligman ME, Weiss J, Weinraub M, Schulman A (1980) Coping behavior: learned helplessness, physiological change and learned inactivity. Behav Res Ther 18:459–512

    Article  PubMed  CAS  Google Scholar 

  • Servatius RJ, Shors TJ (1994) Exposure to inescapable stress persistently facilitates associative and nonassociative learning in rats. Behav Neurosci 108:1101–1106

    Article  PubMed  CAS  Google Scholar 

  • Sherman AD, Sacquitne JL, Petty F (1982) Specificity of the learned helplessness model of depression. Pharmacol Biochem Behav 16:449–454

    Article  PubMed  CAS  Google Scholar 

  • Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS (2002) Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 22:3251–3261

    PubMed  CAS  Google Scholar 

  • Shors TJ, Seib TB, Levine S, Thompson RF (1989) Inescapable versus escapable shock modulates long-term potentiation in the rat hippocampus. Science 244:224–226

    Article  PubMed  CAS  Google Scholar 

  • Shumake J, Edwards E, Gonzalez-Lima F (2003) Opposite metabolic changes in the habenula and ventral tegmental area of a genetic model of helpless behavior. Brain Res 963:274–281

    Article  PubMed  CAS  Google Scholar 

  • Shumake J, Ilango A, Scheich H, Wetzel W, Ohl FW (2010) Differential neuromodulation of acquisition and retrieval of avoidance learning by the lateral habenula and ventral tegmental area. J Neurosci 30:5876–5883

    Article  PubMed  CAS  Google Scholar 

  • Siuciak JA, Lewis DR, Wiegand SJ, Lindsay RM (1997) Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol Biochem Behav 56:131–137

    Article  PubMed  CAS  Google Scholar 

  • Tanti A, Belzung C (2013) Hippocampal neurogenesis: a biomarker for depression or antidepressant effects? Methodological considerations and perspectives for future research. Cell Tissue Res. doi:10.1007/s00441-013-1612-z

  • Uher R (2013) Common genetic variation and antidepressant efficacy in major depressive disorder: a meta-analysis of three genome-wide pharmacogenetic studies. Am J Psychiatry 170:207–217

    Article  Google Scholar 

  • Urani A, Chourbaji S, Gass P (2005) Mutant mouse models of depression: candidate genes and current mouse lines. Neurosci Biobehav Rev 29:805–828

    Article  PubMed  CAS  Google Scholar 

  • Vollmayr B, Henn FA (2001) Learned helplessness in the rat: improvements in validity and reliability. Brain Res Protocol 8:1–7

    Article  CAS  Google Scholar 

  • Vollmayr B, Faust H, Lewicka S, Henn FA (2001) Brain-derived-neurotrophic-factor (BDNF) stress response in rats bred for learned helplessness. Mol Psychiatry 6:358

    Article  Google Scholar 

  • Vollmayr B, Simonis C, Weber S, Gass P, Henn F (2003) Reduced cell proliferation in the dentate gyrus is not correlated with the development of learned helplessness. Biol Psychiatry 54:1035–1040

    Article  PubMed  Google Scholar 

  • Vollmayr B, Bachteler D, Vengeliene V, Gass P, Spanagel R, Henn F (2004) Rats with congenital learned helplessness respond less to sucrose but show no deficits in activity or learning. Behav Brain Res 150:217–221

    Article  PubMed  CAS  Google Scholar 

  • Vollmayr B, Mahlstedt MM, Henn FA (2007) Neurogenesis and depression: what animal models tell us about the link. Eur Arch Psychiatry Clin Neurosci 257:300–303

    Article  PubMed  Google Scholar 

  • Weiss JM (1978) Gastric erosions in rats and stress. Gastroenterology 75:753–756

    PubMed  CAS  Google Scholar 

  • Weiss JM, Simson PG (1986) Depression in an animal model: focus on the locus ceruleus. Ciba Found Symp 123:191–215

    PubMed  CAS  Google Scholar 

  • Wiborg O (2013) Cell Tissue Res. doi:10.1007/s00441-013-1664-0

  • Willner P (1984) The validity of animal models of depression. Psychopharmacology 83:1–16

    Article  PubMed  CAS  Google Scholar 

  • Winter C, Vollmayr B, Djodari-Irani A, Klein J, Sartorius A (2011) Pharmacological inhibition of the lateral habenula improves depressive-like behavior in an animal model of treatment resistant depression. Behav Brain Res 216:463–465

    Article  PubMed  CAS  Google Scholar 

  • Zacharko RM, Bowers WJ, Kokkinidis L, Anisman H (1983) Region-specific reductions of intracranial self-stimulation after uncontrollable stress: possible effects on reward processes. Behav Brain Res 9:129–141

    Article  PubMed  CAS  Google Scholar 

  • Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63:856–864

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was funded through a grant from the German Ministry of Education and Research (BMBF, 01GQ1003B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Vollmayr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vollmayr, B., Gass, P. Learned helplessness: unique features and translational value of a cognitive depression model. Cell Tissue Res 354, 171–178 (2013). https://doi.org/10.1007/s00441-013-1654-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1654-2

Keywords

Navigation