Skip to main content

Learned Helplessness in Rodents

  • Protocol
  • First Online:
Psychiatric Vulnerability, Mood, and Anxiety Disorders

Part of the book series: Neuromethods ((NM,volume 190))

Abstract

Learned helplessness (LH) is a well-known phenomenon described in animals upon their exposure to uncontrollable and unpredictable aversive stimuli, usually inescapable shocks. It is often characterized by impairment in learning to escape or avoid controllable aversive stimuli in a subsequent behavioral test. In addition to that, previously stressed animals present a range of other behavioral and physiological changes, including cognitive deficits, decreased reward sensitivity (anhedonia), hypolocomotion, sleep and appetite changes, among others. Disturbances in different neurotransmitter systems in cortical and limbic brain regions as well as impaired neuroplasticity have been associated with the development of LH following exposure to an uncontrollable stressor. Since exposure to uncontrollable stress is a risk factor for developing psychiatric disorders and feelings of helplessness are part of the symptomatology in patients suffering from depression and posttraumatic stress disorder (PTSD), the LH paradigm has been used in animals to study the pathophysiology of such conditions and new treatment options. This chapter summarizes the most relevant discussions about the effects induced by inescapable shock that can be associated with LH development and depression neurobiology. Moreover, we present herein a protocol that can be used to test the effect of different pharmacological interventions and how this can be relevant to studying depression neurobiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Selye H (1950) Stress and the general adaptation syndrome. Br Med J 1:1383–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Selye H (1936) A syndrome produced by diverse nocuous agents. Nature 138:32–32

    Article  Google Scholar 

  3. McEwen BS (2008) Central effects of stress hormones in health and disease: understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol 583:174–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McEwen BS (2006) Protective and damaging effects of stress mediators: central role of the brain. Dialogues Clin Neurosci 8:367–381

    Article  PubMed  PubMed Central  Google Scholar 

  5. McEwen BS, Gianaros PJ (2010) Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Ann N Y Acad Sci 1186:190–222

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ehlert U (2013) Enduring psychobiological effects of childhood adversity. Psychoneuroendocrinology 38:1850–1857

    Article  PubMed  Google Scholar 

  7. Söderlund J, Lindskog M (2018) Relevance of rodent models of depression in clinical practice: can we overcome the obstacles in translational neuropsychiatry? Int J Neuropsychopharmacol 21:668–676

    Article  PubMed  PubMed Central  Google Scholar 

  8. Anderzhanova E, Kirmeier T, Wotjak CT (2017) Animal models in psychiatric research: the RDoC system as a new framework for endophenotype-oriented translational neuroscience. Neurobiol Stress 7:47–56

    Article  PubMed  PubMed Central  Google Scholar 

  9. (2013) Diagnostics, MDPI AG

    Google Scholar 

  10. McArthur R, Borsini F (2006) Animal models of depression in drug discovery: a historical perspective. Pharmacol Biochem Behav 84:436–452

    Article  CAS  PubMed  Google Scholar 

  11. Willner P (1986) Validation criteria for animal models of human mental disorders: learned helplessness as a paradigm case. Prog Neuro-Psychopharmacol Biol Psychiatry 10:677–690

    Article  CAS  Google Scholar 

  12. Gururajan A, Reif A, Cryan JF et al (2019) The future of rodent models in depression research. Nat Rev Neurosci 20:686–701

    Article  CAS  PubMed  Google Scholar 

  13. Belzung C, Lemoine M (2011) Criteria of validity for animal models of psychiatric disorders: focus on anxiety disorders and depression. Biol Mood Anxiety Disord 1:9

    Article  PubMed  PubMed Central  Google Scholar 

  14. Seligman ME, Maier SF (1967) Failure to escape traumatic shock. J Exp Psychol 74:1–9

    Article  CAS  PubMed  Google Scholar 

  15. Overmier JB, Bruce Overmier J, Seligman ME (1967) Effects of inescapable shock upon subsequent escape and avoidance responding. https://doi.org/10.1037/h0024166

  16. Maier SF, Seligman ME (1976) Learned helplessness: theory and evidence. J Exp Psychol Gen 105:3

    Article  Google Scholar 

  17. Overmier JB (1968) Interference with avoidance behavior: failure to avoid traumatic shock. J Exp Psychol 78:340–343

    Article  CAS  PubMed  Google Scholar 

  18. Maier SF, Seligman MEP (2016) Learned helplessness at fifty: insights from neuroscience. Psychol Rev 123:349–367

    Article  PubMed  PubMed Central  Google Scholar 

  19. Maier SF (1970) Failure to escape traumatic electric shock: incompatible skeletal-motor responses or learned helplessness? Learn Motiv 1:157–169

    Article  Google Scholar 

  20. Weiss JM, Glazer HI (1975) Effects of acute exposure to stressors on subsequent avoidance-escape behavior. Psychosom Med 37:499–521

    Article  CAS  PubMed  Google Scholar 

  21. Glazer HI, Weiss JM (1976) Long-term interference effect: an alternative to learned helplessness. J Exp Psychol Anim Behav Process 2:202

    Article  Google Scholar 

  22. Jackson RL, Alexander JH, Maier SF (1980) Learned helplessness, inactivity, and associative deficits: effects of inescapable shock on response choice escape learning. J Exp Psychol Anim Behav Process 6:1–20

    Article  CAS  PubMed  Google Scholar 

  23. Minor TR, Jackson RL, Maier SF (1984) Effects of task-irrelevant cues and reinforcement delay on choice-escape learning following inescapable shock: evidence for a deficit in selective attention. J Exp Psychol Anim Behav Process 10:543–556

    Article  CAS  PubMed  Google Scholar 

  24. Rosellini RA, DeCola JP, Shapiro NR (1982) Cross-motivational effects of inescapable shock are associative in nature. J Exp Psychol Anim Behav Process 8:376–388

    Article  CAS  PubMed  Google Scholar 

  25. Maier SF, Minor TR (1993) Dissociation of interference with the speed and accuracy of escape produced by inescapable shock. Behav Neurosci 107:139–146

    Article  CAS  PubMed  Google Scholar 

  26. Lee RK, Maier SF (1988) Inescapable shock and attention to internal versus external cues in a water discrimination escape task. J Exp Psychol Anim Behav Process 14:302–310

    Article  CAS  PubMed  Google Scholar 

  27. Minor TR, Trauner MA, Lee CY et al (1990) Modeling signal features of escape response: effects of cessation conditioning in “learned helplessness” paradigm. J Exp Psychol Anim Behav Process 16:123–136

    Article  CAS  PubMed  Google Scholar 

  28. Amat J, Paul E, Zarza C et al (2006) Previous experience with behavioral control over stress blocks the behavioral and dorsal raphe nucleus activating effects of later uncontrollable stress: role of the ventral medial prefrontal cortex. J Neurosci 26:13264–13272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maier SF, Amat J, Baratta MV et al (2006) Behavioral control, the medial prefrontal cortex, and resilience. Dialogues Clin Neurosci 8:397–406

    Article  PubMed  PubMed Central  Google Scholar 

  30. Abrahamsen GC, Stock HS, Caldarone BJ et al (1993) Learned helplessness inducing foot shock can exacerbate morphine responsiveness. Physiol Behav 54:289–294

    Article  CAS  PubMed  Google Scholar 

  31. Sutton LC, Lea SE, Will MJ et al (1997) Inescapable shock-induced potentiation of morphine analgesia. Behav Neurosci 111:1105–1113

    Article  CAS  PubMed  Google Scholar 

  32. Pryce CR, Azzinnari D, Sigrist H et al (2012) Establishing a learned-helplessness effect paradigm in C57BL/6 mice: behavioural evidence for emotional, motivational and cognitive effects of aversive uncontrollability per se. Neuropharmacology 62:358–372

    Article  CAS  PubMed  Google Scholar 

  33. Caldarone BJ, George TP, Zachariou V et al (2000) Gender differences in learned helplessness behavior are influenced by genetic background. Pharmacol Biochem Behav 66:811–817

    Article  CAS  PubMed  Google Scholar 

  34. Teixeira NA, Pereira DG, Hermini AH (1997) Effects of naltrexone and cross-tolerance to morphine in a learned helplessness paradigm. Braz J Med Biol Res 30:775–782

    Article  CAS  PubMed  Google Scholar 

  35. Rojas-Corrales MO, Berrocoso E, Gibert-Rahola J et al (2002) Antidepressant-like effects of tramadol and other central analgesics with activity on monoamines reuptake, in helpless rats. Life Sci 72:143–152

    Article  CAS  PubMed  Google Scholar 

  36. Vollmayr B, Gass P (2013) Learned helplessness: unique features and translational value of a cognitive depression model. Cell Tissue Res 354:171–178

    Article  PubMed  Google Scholar 

  37. Pryce CR, Azzinnari D, Spinelli S et al (2011) Helplessness: a systematic translational review of theory and evidence for its relevance to understanding and treating depression. Pharmacol Ther 132:242–267

    Article  CAS  PubMed  Google Scholar 

  38. Maier SF (2001) Exposure to the stressor environment prevents the temporal dissipation of behavioral depression/learned helplessness. Biol Psychiatry 49:763–773

    Article  CAS  PubMed  Google Scholar 

  39. Desan PH, Silbert LH, Maier SF (1988) Long-term effects of inescapable stress on daily running activity and antagonism by desipramine. Pharmacol Biochem Behav 30:21–29

    Article  CAS  PubMed  Google Scholar 

  40. Musty RE, Jordan MP, Lenox RH (1990) Criterion for learned helplessness in the rat: a redefinition. Pharmacol Biochem Behav 36:739–744

    Article  CAS  PubMed  Google Scholar 

  41. Seligman ME, Beagley G (1975) Learned helplessness in the rat. J Comp Physiol Psychol 88:534–541

    Article  CAS  PubMed  Google Scholar 

  42. Saylor CF, Finch AJ Jr, Cassel SC et al (1984) Learned helplessness: effects of noncontingent reinforcement and response cost with emotionally disturbed children. J Psychol 117:189–196

    Article  CAS  PubMed  Google Scholar 

  43. Abramson LY, Seligman ME, Teasdale JD (1978) Learned helplessness in humans: critique and reformulation. J Abnorm Psychol 87:49–74

    Article  CAS  PubMed  Google Scholar 

  44. Chourbaji S, Zacher C, Sanchis-Segura C et al (2005) Learned helplessness: validity and reliability of depressive-like states in mice. Brain Res Brain Res Protoc 16:70–78

    Article  CAS  PubMed  Google Scholar 

  45. Vollmayr B, Henn FA (2001) Learned helplessness in the rat: improvements in validity and reliability. Brain Res Brain Res Protoc 8:1–7

    Article  CAS  PubMed  Google Scholar 

  46. Batsching S, Wolf R, Heisenberg M (2016) Inescapable stress changes walking behavior in flies – learned helplessness revisited. PLoS One 11:e0167066

    Article  PubMed  PubMed Central  Google Scholar 

  47. Demin KA, Lakstygal AM, Chernysh MV et al (2020) The zebrafish tail immobilization (ZTI) test as a new tool to assess stress-related behavior and a potential screen for drugs affecting despair-like states. J Neurosci Methods 337:108637

    Article  CAS  PubMed  Google Scholar 

  48. Baumgarten HG, Göthert M (2012) Serotoninergic neurons and 5-HT receptors in the CNS. Springer

    Google Scholar 

  49. Graeff FG, Guimarães FS, De Andrade TG et al (1996) Role of 5-HT in stress, anxiety, and depression. Pharmacol Biochem Behav 54:129–141

    Article  CAS  PubMed  Google Scholar 

  50. Maier SF, Watkins LR (2005) Stressor controllability and learned helplessness: the roles of the dorsal raphe nucleus, serotonin, and corticotropin-releasing factor. Neurosci Biobehav Rev 29:829–841

    Article  CAS  PubMed  Google Scholar 

  51. Amat J, Baratta MV, Paul E et al (2005) Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nat Neurosci 8:365–371

    Article  CAS  PubMed  Google Scholar 

  52. Koike H, Iijima M, Chaki S (2011) Involvement of AMPA receptor in both the rapid and sustained antidepressant-like effects of ketamine in animal models of depression. Behav Brain Res 224:107–111

    Article  CAS  PubMed  Google Scholar 

  53. Marques DB, Ruggiero RN, Bueno-Junior LS et al (2021) Prediction of learned resistance or helplessness by hippocampal-prefrontal cortical network activity during stress. J Neurosci

    Google Scholar 

  54. Hajszan T, Dow A, Warner-Schmidt JL et al (2009) Remodeling of hippocampal spine synapses in the rat learned helplessness model of depression. Biol Psychiatry 65:392–400

    Article  PubMed  Google Scholar 

  55. Ryan BK, Vollmayr B, Klyubin I et al (2010) Persistent inhibition of hippocampal long-term potentiation in vivo by learned helplessness stress. Hippocampus 20:758–767

    Article  CAS  PubMed  Google Scholar 

  56. Shors TJ (2004) Learning during stressful times. Learn Mem 11:137–144

    Article  PubMed  Google Scholar 

  57. Herman JP, Figueiredo H, Mueller NK et al (2003) Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front Neuroendocrinol 24:151–180

    Article  CAS  PubMed  Google Scholar 

  58. Huzian O, Baka J, Csakvari E et al (2021) Stress resilience is associated with hippocampal synaptoprotection in the female rat learned helplessness paradigm. Neuroscience 459:85–103

    Article  CAS  PubMed  Google Scholar 

  59. Aznar S, Klein AB, Santini MA et al (2010) Aging and depression vulnerability interaction results in decreased serotonin innervation associated with reduced BDNF levels in hippocampus of rats bred for learned helplessness. Synapse 64:561–565

    Article  CAS  PubMed  Google Scholar 

  60. Bland ST, Tamlyn JP, Barrientos RM et al (2007) Expression of fibroblast growth factor-2 and brain-derived neurotrophic factor mRNA in the medial prefrontal cortex and hippocampus after uncontrollable or controllable stress. Neuroscience 144:1219–1228

    Article  CAS  PubMed  Google Scholar 

  61. Schulte-Herbrüggen O, Hellweg R, Chourbaji S et al (2007) Differential regulation of neurotrophins and serotonergic function in mice with genetically reduced glucocorticoid receptor expression. Exp Neurol 204:307–316

    Article  PubMed  Google Scholar 

  62. Vollmayr B, Faust H, Lewicka S et al (2001) Brain-derived-neurotrophic-factor (BDNF) stress response in rats bred for learned helplessness. Mol Psychiatry 6(471–4):358

    Article  Google Scholar 

  63. Cheng Y, Pardo M, Armini R de S et al (2016) Stress-induced neuroinflammation is mediated by GSK3-dependent TLR4 signaling that promotes susceptibility to depression-like behavior. Brain Behav Immun 53:207–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kubera M, Obuchowicz E, Goehler L et al (2011) In animal models, psychosocial stress-induced (neuro)inflammation, apoptosis and reduced neurogenesis are associated to the onset of depression. Prog Neuro-Psychopharmacol Biol Psychiatry 35:744–759

    Article  CAS  Google Scholar 

  65. Woodburn SC, Bollinger JL, Wohleb ES (2021) The semantics of microglia activation: neuroinflammation, homeostasis, and stress. J Neuroinflammation 18:258

    Article  PubMed  PubMed Central  Google Scholar 

  66. McKinney WT Jr, Bunney WE Jr (1969) Animal model of depression. I. Review of evidence: implications for research. Arch Gen Psychiatry 21:240–248

    Article  PubMed  Google Scholar 

  67. Willner P (1984) The validity of animal models of depression. Psychopharmacology 83:1–16

    Article  CAS  PubMed  Google Scholar 

  68. Murua VS, Gomez RA, Andrea ME et al (1991) Shuttle-box deficits induced by chronic variable stress: reversal by imipramine administration. Pharmacol Biochem Behav 38:125–130

    Article  CAS  PubMed  Google Scholar 

  69. Tennen H, Gillen R, Drum PE (1982) The debilitating effect of exposure to noncontingent escape: a test of the learned helplessness model. J Pers 50:409–425

    Article  CAS  PubMed  Google Scholar 

  70. Lester D (1998) Helplessness, hopelessness, and haplessness and suicidality. Psychol Rep 82:946

    Article  CAS  PubMed  Google Scholar 

  71. Leenaars L, Lester D (2007) Construct validity of the helplessness/hopelessness/haplessness scale: correlations with perfectionism and depression

    Google Scholar 

  72. Kendler KS, Gardner CO, Prescott CA (2006) Toward a comprehensive developmental model for major depression in men. Am J Psychiatry 163:115–124

    Article  PubMed  Google Scholar 

  73. Ho TC, King LS (2021) Mechanisms of neuroplasticity linking early adversity to depression: developmental considerations. Transl Psychiatry 11:517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zacharko RM, Bowers WJ, Kokkinidis L et al (1983) Region-specific reductions of intracranial self-stimulation after uncontrollable stress: possible effects on reward processes. Behav Brain Res 9:129–141

    Article  CAS  PubMed  Google Scholar 

  75. Sanchis-Segura C, Spanagel R, Henn FA et al (2005) Reduced sensitivity to sucrose in rats bred for helplessness: a study using the matching law. Behav Pharmacol 16:267–270

    Article  CAS  PubMed  Google Scholar 

  76. Park S-C, Kim Y-K (2018) Depression in DSM-5: changes, controversies, and future directions. https://doi.org/10.1007/978-981-10-6577-4_1

  77. Seligman MEP, Weiss JM, Weinraub M et al (1980) Part I: introduction. Behav Res Ther 18:459–461

    Article  CAS  PubMed  Google Scholar 

  78. Adrien J, Dugovic C, Martin P (1991) Sleep-wakefulness patterns in the helpless rat. Physiol Behav 49:257–262

    Article  CAS  PubMed  Google Scholar 

  79. Haracz JL, Minor TR, Wilkins JN et al (1988) Learned helplessness: an experimental model of the DST in rats. Biol Psychiatry 23:388–396

    Article  CAS  PubMed  Google Scholar 

  80. Maier SF, Nguyen KT, Deak T et al (1999) Stress, learned helplessness, and brain interleukin-1 beta. Adv Exp Med Biol 461:235–249

    Article  CAS  PubMed  Google Scholar 

  81. Chen L, Wang X, Zhang Y et al (2021) Daidzein alleviates hypothalamic-pituitary-adrenal Axis hyperactivity, ameliorates depression-like behavior, and partly rectifies circulating cytokine imbalance in two rodent models of depression. Front Behav Neurosci 15:671864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sherman AD, Sacquitne JL, Petty F (1982) Specificity of the learned helplessness model of depression. Pharmacol Biochem Behav 16:449–454

    Article  CAS  PubMed  Google Scholar 

  83. Highland JN, Morris PJ, Zanos P et al (2019) Mouse, rat, and dog bioavailability and mouse oral antidepressant efficacy of (2R,6R)-hydroxynorketamine. J Psychopharmacol 33:12–24

    Article  CAS  PubMed  Google Scholar 

  84. Sartorius A, Meyer-Lindenberg A (2009) Deep brain stimulation of the lateral habenula to treat depression. Front Neurosci 3:272

    Google Scholar 

  85. Azis IA, Hashioka S, Tsuchie K et al (2019) Electroconvulsive shock restores the decreased coverage of brain blood vessels by astrocytic endfeet and ameliorates depressive-like behavior. J Affect Disord 257:331–339

    Article  PubMed  Google Scholar 

  86. Nijssen A, Schelvis PR (1987) Effect of an anti-anxiety drug in a learned helplessness experiment. Neuropsychobiology 18:195–198

    Article  CAS  PubMed  Google Scholar 

  87. Morais M, Patrício P, Mateus-Pinheiro A et al (2017) The modulation of adult neuroplasticity is involved in the mood-improving actions of atypical antipsychotics in an animal model of depression. Transl Psychiatry 7:e1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Paula Soares V de, Vicente MA, Biojone C, et al (2011) Distinct behavioral consequences of stress models of depression in the elevated T-maze. Behav Brain Res 225:590–595

    Google Scholar 

  89. Wieland S, Boren JL, Consroe PF et al (1986) Stock differences in the susceptibility of rats to learned helplessness training. Life Sci 39:937–944

    Article  CAS  PubMed  Google Scholar 

  90. Takase LF, Nogueira MI, Bland ST et al (2005) Effect of number of tailshocks on learned helplessness and activation of serotonergic and noradrenergic neurons in the rat. Behav Brain Res 162:299–306

    Article  CAS  PubMed  Google Scholar 

  91. Joca SRL, Padovan CM, Guimarães FS (2003) Activation of post-synaptic 5-HT(1A) receptors in the dorsal hippocampus prevents learned helplessness development. Brain Res 978:177–184

    Article  CAS  PubMed  Google Scholar 

  92. Joca SRL, Zanelati T, Guimarães FS (2006) Post-stress facilitation of serotonergic, but not noradrenergic, neurotransmission in the dorsal hippocampus prevents learned helplessness development in rats. Brain Res 1087:67–74

    Article  CAS  PubMed  Google Scholar 

  93. Stanquini LA, Biojone C, Guimarães FS et al (2018) Repeated treatment with nitric oxide synthase inhibitor attenuates learned helplessness development in rats and increases hippocampal BDNF expression. Acta Neuropsychiatr 30:127–136

    Article  PubMed  Google Scholar 

  94. Sales AJ, Maciel IS, Suavinha ACDR et al (2021) Modulation of DNA methylation and gene expression in rodent cortical neuroplasticity pathways exerts rapid antidepressant-like effects. Mol Neurobiol 58:777–794

    Article  CAS  PubMed  Google Scholar 

  95. Sousa Maciel I de, Sales AJ, Casarotto PC, et al (2020) Nitric Oxide Synthase inhibition counteracts the stress-induced DNA methyltransferase 3b expression in the hippocampus of rats. Eur J Neurosci

    Google Scholar 

  96. Geoffroy M, Christensen AV (1993) Psychomotor stimulants versus antidepressants in the learned helplessness model of depression. Drug Dev Res 29:48–55

    Article  CAS  Google Scholar 

  97. Sales AJ, Fogaça MV, Sartim AG et al (2019) Cannabidiol induces rapid and sustained antidepressant-like effects through increased BDNF signaling and synaptogenesis in the prefrontal cortex. Mol Neurobiol 56:1070–1081

    Article  CAS  PubMed  Google Scholar 

  98. Sales AJ, Joca SRL (2018) Antidepressant administration modulates stress-induced DNA methylation and DNA methyltransferase expression in rat prefrontal cortex and hippocampus. Behav Brain Res 343:8–15

    Article  CAS  PubMed  Google Scholar 

  99. Martin P, Soubrie P, Simon P (1987) The effect of monoamine oxidase inhibitors compared with classical tricyclic antidepressants on learned helplessness paradigm. Prog Neuro-Psychopharmacol Biol Psychiatry 11:1–7

    Article  CAS  Google Scholar 

  100. Petty F, Sacquitne JL, Sherman AD (1982) Tricyclic antidepressant drug action correlates with its tissue levels in anterior neocortex. Neuropharmacology 21:475–477

    Article  CAS  PubMed  Google Scholar 

  101. Ramaker MJ, Dulawa SC (2017) Identifying fast-onset antidepressants using rodent models. Mol Psychiatry 22:656–665

    Article  CAS  PubMed  Google Scholar 

  102. Shirayama Y, Hashimoto K (2018) Lack of antidepressant effects of (2R,6R)-hydroxynorketamine in a rat learned helplessness model: comparison with (R)-ketamine. Int J Neuropsychopharmacol 21:84–88

    Article  CAS  PubMed  Google Scholar 

  103. Antila H, Ryazantseva M, Popova D et al (2017) Isoflurane produces antidepressant effects and induces TrkB signaling in rodents. Sci Rep 7:7811

    Article  PubMed  PubMed Central  Google Scholar 

  104. Hamani C, Diwan M, Macedo CE et al (2010) Antidepressant-like effects of medial prefrontal cortex deep brain stimulation in rats. Biol Psychiatry 67:117–124

    Article  PubMed  Google Scholar 

  105. Creed MC, Hamani C, Nobrega JN (2013) Effects of repeated deep brain stimulation on depressive- and anxiety-like behavior in rats: comparing entopeduncular and subthalamic nuclei. Brain Stimul 6:506–514

    Article  PubMed  Google Scholar 

  106. Han S, Yang SH, Kim JY et al (2017) Down-regulation of cholinergic signaling in the habenula induces anhedonia-like behavior. Sci Rep 7:900

    Article  PubMed  PubMed Central  Google Scholar 

  107. Urbanavicius J, Fabius S, Roncalho A et al (2019) Melanin-concentrating hormone in the Locus Coeruleus aggravates helpless behavior in stressed rats. Behav Brain Res 374:112120

    Article  CAS  PubMed  Google Scholar 

  108. Nobrega JN, Hedayatmofidi PS, Lobo DS (2016) Strong interactions between learned helplessness and risky decision-making in a rat gambling model. Sci Rep 6:37304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Dalla C, Edgecomb C, Whetstone AS et al (2008) Females do not express learned helplessness like males do. Neuropsychopharmacology 33:1559–1569

    Article  PubMed  Google Scholar 

  110. Ribeiro DE, Casarotto PC, Staquini L et al (2019) Reduced P2X receptor levels are associated with antidepressant effect in the learned helplessness model. PeerJ 7:e7834

    Article  PubMed  PubMed Central  Google Scholar 

  111. Drugan RC, Basile AS, Ha JH et al (1997) Analysis of the importance of controllable versus uncontrollable stress on subsequent behavioral and physiological functioning. Brain Res Brain Res Protoc 2:69–74

    Article  CAS  PubMed  Google Scholar 

  112. Landgraf D, Long J, Der-Avakian A et al (2015) Dissociation of learned helplessness and fear conditioning in mice: a mouse model of depression. PLoS One 10:e0125892

    Article  PubMed  PubMed Central  Google Scholar 

  113. Baratta MV, Christianson JP, Gomez DM et al (2007) Controllable versus uncontrollable stressors bi-directionally modulate conditioned but not innate fear. Neuroscience 146:1495–1503

    Article  CAS  PubMed  Google Scholar 

  114. Shumake J, Barrett D, Gonzalez-Lima F (2005) Behavioral characteristics of rats predisposed to learned helplessness: reduced reward sensitivity, increased novelty seeking, and persistent fear memories. Behav Brain Res 164:222–230

    Article  PubMed  Google Scholar 

  115. Bougarel L, Guitton J, Zimmer L et al (2011) Behaviour of a genetic mouse model of depression in the learned helplessness paradigm. Psychopharmacology 215:595–605

    Article  CAS  PubMed  Google Scholar 

  116. Cai H, Zhang P, Qi G et al (2021) Systematic input-output mapping reveals structural plasticity of VTA dopamine neurons-zona Incerta loop underlying the social buffering effects in learned helplessness. Mol Neurobiol

    Google Scholar 

  117. Richter SH, Sartorius A, Gass P et al (2014) A matter of timing: harm reduction in learned helplessness. Behav Brain Funct 10:41

    Article  PubMed  Google Scholar 

  118. Yang C, Shirayama Y, Zhang J-C, et al (2015) regional differences in brain-derived neurotrophic factor levels and dendritic spine density confer resilience to inescapable stress. Int J Neuropsychopharmacol 18:yu121

    Google Scholar 

  119. Yang C, Shirayama Y, Zhang J-C et al (2015) Peripheral interleukin-6 promotes resilience versus susceptibility to inescapable electric stress. Acta Neuropsychiatr 27:312–316

    Article  PubMed  Google Scholar 

  120. Perova Z, Delevich K, Li B (2015) Depression of excitatory synapses onto parvalbumin interneurons in the medial prefrontal cortex in susceptibility to stress. J Neurosci 35:3201–3206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Freda JS, Klein SB (1976) Generality of the failure-to-escape (helplessness) phenomenon in rats. Anim Learn Behav 4:401–406

    Article  Google Scholar 

  122. Anisman H, Merali Z (2001) Rodent models of depression: learned helplessness induced in mice. Curr Protoc Neurosci Chapter 8:Unit 8.10C

    Google Scholar 

  123. Anisman H, Merali Z (2009) Learned helplessness in mice. In: Mood and anxiety related phenotypes in mice. Humana Press, Totowa, NJ, pp 177–196

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sâmia Joca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Silveira, K.M., Joca, S. (2023). Learned Helplessness in Rodents. In: Harro, J. (eds) Psychiatric Vulnerability, Mood, and Anxiety Disorders. Neuromethods, vol 190. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2748-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2748-8_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2747-1

  • Online ISBN: 978-1-0716-2748-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics