Skip to main content

Advertisement

Log in

Cyclic AMP-dependent regulation of tyrosine hydroxylase mRNA and immunofluorescence levels in rat retinal precursor cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Stimulation of tyrosine hydroxylase (TH) gene transcription by cyclic AMP (cAMP) has been clearly established in adrenal medula cells and neural-crest-derived cell lines but information on this mechanism is still lacking in dopaminergic neurons. Because they are easily amenable to in vitro experiments, dopaminergic amacrine cells of the retina might constitute a valuable model system to study this mechanism. We have used real-time reverse transcription with the polymerase chain reaction to quantify TH mRNA levels in the rat retina during post-natal development and in retinal precursor cells obtained from neonatal rats and cultured for 3 days in serum-free medium. Whereas the TH mRNA concentration remains consistantly low in control cultures, treatment with cAMP-increasing agents (forskolin, membrane depolarization, phosphodiesterase inhibitors) is sufficient to raise it to the level observed in adult retina (15-fold increase). Treatment of the cultured cells can be delayed by up to 2 days with identical results at the TH mRNA level, thus ruling out a survival-promoting effect of cAMP. TH immunofluorescence has confirmed cAMP-dependent regulation of TH expression at the protein level and indicates that the frequency of TH-positive cells in the cultures is similar to that observed in the adult retina. Selective phosphodiesterase inhibitors suggest that PDE4 is the major subtype involved in the dopaminergic amacrine cell response. Our data clearly establish the cAMP-dependent regulation of TH mRNA and immunofluorescence levels in retinal precursor cells. The possible role of this regulation mechanism in the developmental activation of TH gene expression is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Majid RM, Tremblay F, Baldridge WH (2002) Localization of adenylyl cyclase proteins in the rodent retina. Brain Res Mol Brain Res 101:62–70

    Article  PubMed  CAS  Google Scholar 

  • Adler R (1990) Preparation, enrichment and growth of purified cultures of neurons and photoreceptors from chicks embryos and from normal and mutant mice. In: Conn PM (ed) Methods in neurosciences, vol 2. Academic Press, San Diego, pp 134–150

    Google Scholar 

  • Baker H, Kobayashi K, Okano H, Saino-Saito S (2003) Cortical and striatal expression of tyrosine hydroxylase mRNA in neonatal and adult mice. Cell Mol Neurobiol 23:507–518

    Article  PubMed  CAS  Google Scholar 

  • Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58:488–520

    Article  PubMed  CAS  Google Scholar 

  • Bernard M, Voisin P (2008) Photoreceptor-specific expression, light-dependent localization, and transcriptional targets of the zinc-finger protein Yin Yang 1 in the chicken retina. J Neurochem 105:595–604

    Article  PubMed  CAS  Google Scholar 

  • Borba JC, Henze IP, Silveira MS, Kubrusly RC, Gardino PF, Mello MC de, Hokoç JN, Mello FG de (2005) Pituitary adenylate cyclase-activating polypeptide (PACAP) can act as determinant of the tyrosine hydroxylase phenotype of dopaminergic cells during retina development. Brain Res Dev Brain Res 156:193–201

    Google Scholar 

  • Cailleau V, Bernard M, Morin F, Guerlotte J, Voisin P (2005) Differential regulation of melatonin synthesis genes and phototransduction genes in embryonic chicken retina and cultured retinal precursor cells. Mol Vis 11:472–481

    PubMed  CAS  Google Scholar 

  • Chen X, Xu L, Radcliffe P, Sun B, Tank AW (2008) Activation of tyrosine hydroxylase mRNA translation by cAMP in midbrain dopaminergic neurons. Mol Pharmacol 73:1816–1828

    Article  PubMed  CAS  Google Scholar 

  • Cheung KJ Jr, Rosales JL, Lee BC, Jeong YG, Lee KY (2008) Tyrosine hydroxylase expression and Cdk5 kinase activity in ataxic cerebellum. Mol Cell Biochem 318:7–12

    Article  PubMed  CAS  Google Scholar 

  • Christie P (2005) Roflumilast: a selective phosphodiesterase 4 inhibitor. Drugs Today (Barc) 41:667–675

    Article  CAS  Google Scholar 

  • De Lima LH, Dos Santos KP, De Lauro Castrucci AM (2011) Clock genes, melanopsins, melatonin, and dopamine key enzymes and their modulation by light and glutamate in chicken embryonic retinal cells. Chronobiol Int 28:89–100

    Article  PubMed  Google Scholar 

  • Dénes V, Witkovsky P, Koch M, Hunter DD, Pinzón-Duarte G, Brunken WJ (2007) Laminin deficits induce alterations in the development of dopaminergic neurons in the mouse retina. Vis Neurosci 24:549–562

    Article  PubMed  Google Scholar 

  • Du X, Iacovitti L (1997) Multiple signaling pathways direct the initiation of tyrosine hydroxylase gene expression in cultured brain neurons. Brain Res Mol Brain Res 50:1–8

    Article  PubMed  CAS  Google Scholar 

  • Dubocovich ML (1983) Melatonin is a potent modulator of dopamine release in the retina. Nature 306:782–784

    Article  PubMed  CAS  Google Scholar 

  • Dunn T, Wang CT, Colicos MA, Zaccolo M, Zhang J, Tsien RY, Feller MB (2006) Imaging of cAMP levels and PKA activity reveals that retinal waves drive oscillations in second messenger cascades. J Neurosci 26:12807–12815

    Article  PubMed  CAS  Google Scholar 

  • Evans JA, Battelle BA (1987) Histogenesis of dopamine-containing neurons in the rat retina. Exp Eye Res 44:407–414

    Article  PubMed  CAS  Google Scholar 

  • Firth SI, Wang CT, Feller MB (2005) Retinal waves: mechanisms and function in visual system development. Cell Calcium 37:425–432

    Article  PubMed  CAS  Google Scholar 

  • Fossom LH, Sterling CR, Tank AW (1992) Regulation of tyrosine hydroxylase gene transcription rate and tyrosine hydroxylase mRNA stability by cyclic AMP and glucocorticoid. Mol Pharmacol 42:898–908

    PubMed  CAS  Google Scholar 

  • Gross J, Müller I, Chen Y, Elizalde M, Leclere N, Herrera-Marschitz M, Andersson K (2000) Perinatal asphyxia induces region-specific long-term changes in mRNA levels of tyrosine hydroxylase and dopamine D(1) and D(2) receptors in rat brain. Brain Res Mol Brain Res 79:110–117

    Article  PubMed  CAS  Google Scholar 

  • Hoshi H, Liu WL, Massey SC, Mills SL (2009) ON inputs to the OFF layer: bipolar cells that break the stratification rules of the retina. J Neurosci 29:8875–8883

    Article  PubMed  CAS  Google Scholar 

  • Iuvone PM (1986) Evidence for a D2 dopamine receptor in frog retina that decreases cyclic AMP accumulation and serotonin N-acetyltransferase activity. Life Sci 38:331–342

    Article  PubMed  CAS  Google Scholar 

  • Iuvone PM, Marshburn PB (1982) Regulation of tyrosine hydroxylase activity in retinal cell suspensions: effects of potassium and 8-bromo cyclic AMP. Life Sci 30:85–91

    Article  PubMed  CAS  Google Scholar 

  • Iuvone PM, Galli CL, Garrison-Gund CK, Neff NH (1978) Light stimulates tyrosine hydroxylase activity and dopamine synthesis in retinal amacrine neurons. Science 202:901–902

    Article  PubMed  CAS  Google Scholar 

  • Iuvone PM, Tigges M, Stone RA, Lambert S, Laties AM (1991) Effects of apomorphine, a dopamine receptor agonist, on ocular refraction and axial elongation in a primate model of myopia. Invest Ophthalmol Vis Sci 32:1674–1677

    PubMed  CAS  Google Scholar 

  • Jackson CR, Ruan GX, Aseem F, Abey J, Gamble K, Stanwood G, Palmiter RD, Iuvone PM, McMahon DG (2012) Retinal dopamine mediates multiple dimensions of light-adapted vision. J Neurosci 32:9359–9368

    Article  PubMed  CAS  Google Scholar 

  • Jeon C-J, Strettoi E, Masland RH (1998) The major cell populations of the mouse retina. J Neurosci 18:8936–8946

    PubMed  CAS  Google Scholar 

  • Kedzierski W, Porter JC (1990) Quantitative study of tyrosine hydroxylase mRNA in catecholaminergic neurons and adrenals during development and aging. Brain Res Mol Brain Res 7:45–51

    Article  PubMed  CAS  Google Scholar 

  • Kim KS, Lee MK, Carroll J, Joh TH (1993a) Both the basal and inducible transcription of the tyrosine hydroxylase gene are dependent upon a cAMP response element. J Biol Chem 268:15689–15695

    PubMed  CAS  Google Scholar 

  • Kim KS, Park DH, Wessel TC, Song B, Wagner JA, Joh TH (1993b) A dual role for the cAMP-dependent protein kinase in tyrosine hydroxylase gene expression. Proc Natl Acad Sci USA 90:3471–3475

    Article  PubMed  CAS  Google Scholar 

  • Kumer SC, Vrana KE (1996) Intricate regulation of tyrosine hydroxylase activity and gene expression. J Neurochem 67:443–462

    Article  PubMed  CAS  Google Scholar 

  • Landi S, Ciucci F, Maffei L, Berardi N, Cenni MC (2009) Setting the pace for retinal development: environmental enrichment acts through insulin-like growth factor 1 and brain-derived neurotrophic factor. J Neurosci 29:10809–10819

    Article  PubMed  CAS  Google Scholar 

  • Leviel V, Guibert B, Mallet J, Faucon-Biguet N (1991) Induction of tyrosine hydroxylase in the rat substantia nigra by local injection of forskolin. J Neurosci Res 30:427–432

    Article  PubMed  CAS  Google Scholar 

  • Lewis EJ, Tank AW, Weiner N, Chikaraishi DM (1983) Regulation of tyrosine hydroxylase mRNA by glucocorticoid and cyclic AMP in a rat pheochromocytoma cell line. Isolation of a cDNA clone for tyrosine hydroxylase mRNA. J Biol Chem 258:14632–14637

    PubMed  CAS  Google Scholar 

  • Lewis-Tuffin LJ, Quinn PG, Chikaraishi DM (2004) Tyrosine hydroxylase transcription depends primarily on cAMP response element activity, regardless of the type of inducing stimulus. Mol Cell Neurosci 25:536–547

    Article  PubMed  CAS  Google Scholar 

  • Lugnier C (2006) Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 109:366–398

    Article  PubMed  CAS  Google Scholar 

  • Martin-Martinelli E, Simon A, Vigny A, Nguyen-Legros J (1989) Postnatal development of tyrosine-hydroxylase-immunoreactive cells in the rat retina. Morphology and distribution. Dev Neurosci 11:11–25

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin T, Torborg CL, Feller MB, O’Leary DD (2003) Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development. Neuron 40:1147–1160

    Article  PubMed  CAS  Google Scholar 

  • Nguyen-Legros J, Vigny A, Gay M (1983) Post-natal development of TH-like immunoreactivity in the rat retina. Exp Eye Res 37:23–32

    Article  PubMed  CAS  Google Scholar 

  • Nguyen-Legros J, Versaux-Botteri C, Vigny A (1986) Strain differences in the density of dopaminergic cells of the retina in albino rats. Neurosci Lett 66:13–18

    Article  PubMed  CAS  Google Scholar 

  • Nguyen-Legros J, Chanut E, Versaux-Botteri C, Simon A, Trouvin JH (1996) Dopamine inhibits melatonin synthesis in photoreceptor cells through a D2-like receptor subtype in the rat retina: biochemical and histochemical evidence. J Neurochem 67:2514–2520

    Article  PubMed  CAS  Google Scholar 

  • Nicol X, Voyatzis S, Muzerelle A, Narboux-Nême N, Südhof TC, Miles R, Gaspar P (2007) cAMP oscillations and retinal activity are permissive for ephrin signaling during the establishment of the retinotopic map. Nat Neurosci 10:340–347

    Article  PubMed  CAS  Google Scholar 

  • Nir I, Haque R, Iuvone PM (2000) Diurnal metabolism of dopamine in the mouse retina. Brain Res 870:118–125

    Article  PubMed  CAS  Google Scholar 

  • Nishi A, Kuroiwa M, Miller DB, O’Callaghan JP, Bateup HS, Shuto T, Sotogaku N, Fukuda T, Heintz N, Greengard P, Snyder GL (2008) Distinct roles of PDE4 and PDE10A in the regulation of cAMP/PKA signaling in the striatum. J Neurosci 28:10460–10471

    Article  PubMed  CAS  Google Scholar 

  • Ogilvie JM, Speck JD (2002) Dopamine has a critical role in photoreceptor degeneration in the rd mouse. Neurobiol Dis 20:33–40

    Article  Google Scholar 

  • Oorschot DE (1996) Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: a stereological study using the cavalieri and optical disector methods. J Comp Neurol 366:580–599

    Article  PubMed  CAS  Google Scholar 

  • Pagès L, Gavaldà A, Lehner MD (2009) PDE4 inhibitors: a review of current developments (2005–2009). Expert Opin Ther Pat 19:1501–1519

    Article  PubMed  Google Scholar 

  • Prakash N, Wurst W (2006) Development of dopaminergic neurons in the mammalian brain. Cell Mol Life Sci 63:187–206

    Article  PubMed  CAS  Google Scholar 

  • Ravary A, Muzerelle A, Hervé D, Pascoli V, Ba-Charvet KN, Girault JA, Welker E, Gaspar P (2003) Adenylate cyclase 1 as a key actor in the refinement of retinal projection maps. J Neurosci 23:2228–2238

    PubMed  CAS  Google Scholar 

  • Sharma RK (2001) Development and survival of tyrosine hydroxylase containing neurons in RCS rat retinae. Curr Eye Res 23:256–262

    Article  PubMed  CAS  Google Scholar 

  • Smolen AJ, Wright LL, Cunningham TJ (1983) Neuron numbers in the superior cervical sympathetic ganglion of the rat: a critical comparison of methods for cell counting. J Neurocytol 12:739–750

    Article  PubMed  CAS  Google Scholar 

  • Stellwagen D, Shatz CJ, Feller MB (1999) Dynamics of retinal waves are controlled by cyclic AMP. Neuron 24:673–685

    Article  PubMed  CAS  Google Scholar 

  • Trocmé C, Sarkis C, Hermel JM, Duchateau R, Harrison S, Simonneau M, Al-Shawi R, Mallet J (1998) CRE and TRE sequences of the rat tyrosine hydroxylase promoter are required for TH basal expression in adult mice but not in the embryo. Eur J Neurosci 10:508–521

    Article  PubMed  Google Scholar 

  • Versaux-Botteri C, Nguyen-Legros J (1986) An improved method for tyrosine hydroxylase immunolabelling of catecholamine cells in whole mounted rat retina. J Histochem Cytochem 34:743–747

    Article  PubMed  CAS  Google Scholar 

  • Voisin P, Bernard M (2009) Cyclic AMP-dependent activation of rhodopsin gene transcription in cultured retinal precursor cells of chicken embryo. J Neurochem 110:318–327

    Article  PubMed  CAS  Google Scholar 

  • Volpert KN, Rothermel A, Layer PG (2007) GDNF stimulates rod photoreceptors and dopaminergic amacrine cells in chicken retinal reaggregates. Invest Ophthalmol Vis Sci 48:5306–5314

    Article  PubMed  Google Scholar 

  • Wessels-Reiker M, Haycock JW, Howlett AC, Strong R (1991) Vasoactive intestinal polypeptide induces tyrosine hydroxylase in PC12 cells. J Biol Chem 266:9347–9350

    PubMed  CAS  Google Scholar 

  • Witkovsky P (2004) Dopamine and retinal function. Doc Ophthalmol 108:17–40

    Article  PubMed  Google Scholar 

  • Wu DK, Cepko CL (1993) Development of dopaminergic neurons is insensitive to optic nerve section in the neonatal rat retina. Brain Res Dev Brain Res 74:253–260

    Article  PubMed  CAS  Google Scholar 

  • Zawilska J, Iuvone PM (1989) Catecholamine receptors regulating serotonin N-acetyltransferase activity and melatonin content of chicken retina and pineal gland: D2-dopamine receptors in retina and alpha-2 adrenergic receptors in pineal gland. J Pharmacol Exp Ther 250:86–92

    PubMed  CAS  Google Scholar 

  • Zhang DQ, Zhou TR, McMahon DG (2007) Functional heterogeneity of retinal dopaminergic neurons underlying their multiple roles in vision. J Neurosci 27:692–699

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Afsaneh Gaillard for her kind gift of the anti-TH antibody and to Mrs. L. Cousin for her technical help at multiple stages of this work. We appreciate the technical assistance of the Service Commun de Publication Assistée par Ordinateur (Mr. J. Habrioux).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Voisin.

Additional information

This work was supported by the CNRS (FRE 3511).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voisin, P., Bernard, M. Cyclic AMP-dependent regulation of tyrosine hydroxylase mRNA and immunofluorescence levels in rat retinal precursor cells. Cell Tissue Res 352, 207–216 (2013). https://doi.org/10.1007/s00441-013-1555-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1555-4

Keywords

Navigation