Skip to main content

Methods of Dopamine Research in Retina Cells

  • Protocol
  • First Online:
Dopamine

Abstract

Dopamine is the main catecholamine found in the retina of most species, being synthesized from the l-amino acid tyrosine. Its effects are mediated by G protein coupled receptors subfamilies that are commonly coupled to adenylyl cyclase in opposite manners. There is evidence that this amine works as a developmental signal in the embryonic retina and several distinct roles have been attributed to dopamine in the retina such as proliferation, synaptogenesis, neuroprotection, increased signal transmission in cone, gap junction modulation, neuronal–pigmented epithelium–glial communication, and neuron–glia interaction. Here we describe methods that have been used in the study of the dopaminergic function in the retina in the last 40 years. We emphasize the approaches used in the studies on the development of the avian and rodent retina. The dopaminergic system is one of the first phenotypes to appear in the developing vertebrate retina.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Witkovsky P, Dearry A (1992) Functional roles of dopamine in the vertebrate retina. Prog Retinal Res 11:247–292

    Article  Google Scholar 

  2. Reis RAM, Ventura ALV, Kubrusly RC, de Mello MC, de Mello FG (2007) Dopaminergic signaling in the developing retina. Brain Res Rev 54:181–188

    Article  PubMed  CAS  Google Scholar 

  3. de Mello FG (1978) The ontogeny of dopamine-dependent increase of adenosine 3′,5′-cyclic monophosphate in the chick retina. J Neurochem 31:1049–1053

    Article  PubMed  Google Scholar 

  4. Gardino PF, dos Santos RM, Hokoc JN (1993) Histogenesis and topographical distribution of tyrosine hydroxylase immunoreactive amacrine cells in the developing chick retina. Brain Res Dev Brain Res 72:226–236

    Article  PubMed  CAS  Google Scholar 

  5. Ventura ALM, Klein WL, de Mello FG (1984) Differential ontogenesis of D1 and D2 dopaminergic receptors in the chick embryo retina. Brain Res 314:217–223

    PubMed  CAS  Google Scholar 

  6. Kubrusly RCC, Guimarães MPZ, Vieira APB, Hokoç JN, Casarini DE, de Mello MC, de Mello FG (2003) L-DOPA supply to the neuro retina activates dopaminergic communication at the early stages of embryonic development. J Neurochem 86:45–54

    Article  PubMed  CAS  Google Scholar 

  7. Kubrusly RC, Panizzutti R, Gardino PF, Stutz B, Reis RA, Ventura AL, de Mello MC, de Mello FG (2008) Expression of functional dopaminergic phenotype in purified cultured Müller cells from vertebrate retina. Neurochem Int 53:63–70

    Article  PubMed  CAS  Google Scholar 

  8. de Melo Reis RA, Ventura ALV, Schitine CS, de Mello MC, de Mello FG (2008) Müller glia as an active compartment modulating nervous activity in the vertebrate retina: neurotransmitters and trophic factors. Neurochem Res 33:1466–1474

    Article  PubMed  Google Scholar 

  9. Soares HC, Reis RA, De Mello FG, Ventura AL, Kurtenbach E (2000) Differential expression of D(1A) and D(1B) dopamine receptor mRNAs in the developing avian retina. J Neurochem 75:1071–1075

    Article  PubMed  CAS  Google Scholar 

  10. Kubrusly RC, da Cunha MC, Reis RA, Soares H, Ventura AL, Kurtenbach E, de Mello MC, de Mello FG (2005) Expression of functional receptors and transmitter enzymes in cultured Müller cells. Brain Res 1038:141–149

    Article  PubMed  CAS  Google Scholar 

  11. Ventura ALM, de Mello FG (1990) D1 dopamine receptors in neurite regions of embryonic and differentiated retina are highly coupled to adenylyl cyclase in the embryonic but not in the mature tissue. Brain Res 530:301–308

    Article  PubMed  CAS  Google Scholar 

  12. Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  13. Reis RA, Cabral da Silva MC, Loureiro dos Santos NE, Bampton E, Taylor JS, de Mello FG, Linden R (2002) Sympathetic neuronal survival induced by retinal trophic factors. J Neurobiol 50:13–23

    Article  PubMed  CAS  Google Scholar 

  14. Kubrusly RC, Ventura AL, Reis RA et al (2007) Norepinephrine acts as D1-dopaminergic agonist in the embryonic avian retina: late expression of β1-adrenergic receptor shifts norepinephrine specificity in the adult tissue. Neurochem Int 50:211–218

    Article  PubMed  CAS  Google Scholar 

  15. Guimarães MZP, Hokoç JN, Duvoisin R et al (2001) Dopaminergic retinal cell differentiation in culture: modulation by forskolin and dopamine. Eur J Neurosci 13:1931–1937

    Article  PubMed  Google Scholar 

  16. Borba JC, Henze IP, Silveira MS et al (2005) Pituitary adenylate cyclase-activating polypeptide (PACAP) can act as determinant of the tyrosine hydroxylase phenotype of dopaminergic cells during retina development. Brain Res Dev Brain Res 156:193–201

    Article  PubMed  CAS  Google Scholar 

  17. Dos Santos RM, Gardino PF (1998) Differential distribution of a second type of tyrosine hydroxylase immunoreactive amacrine cell in the chick retina. J Neurocytol 27:33–43

    Article  PubMed  Google Scholar 

  18. Taveira da Silva R, Hokoç JN, de Mello FG et al (2009) Differential immunodetection of L-DOPA decarboxylase and tyrosine hydroxylase in the vertebrate retina. Int J Dev Neurosci 27:469–476

    Article  CAS  Google Scholar 

  19. De Mello MC, Pinheiro MC, de Mello FG (1996) Transient expression of an atypical D1-like dopamine receptor system during avian retina differentiation. Braz J Med Biol Res 29:1035–1044

    PubMed  Google Scholar 

  20. de Mello MC, Ventura ALM, Paes de Carvalho R, Klein WL, de Mello FG (1982) Regulation of dopamine and adenosine-dependent adenylate cyclase systems of chick embryo retina cells in culture. Proc Natl Acad Sci USA 79:5708–5712

    Article  PubMed  Google Scholar 

  21. Arita DY, Di Marco GS, Schor N, Casarini DE (2002) Purification and characterization of the active form of tyrosine hydroxylase from mesangial cells in culture. J Cell Biochem 87:58–64

    Article  PubMed  CAS  Google Scholar 

  22. Lankford KL, De Mello FG, Klein WL (1988) D1-type dopamine receptors inhibit growth cone motility in cultured retina neurons: evidence that neurotransmitters act as morphogenic growth regulators in the developing central nervous system. Proc Natl Acad Sci USA 85:2839–2843

    Article  PubMed  CAS  Google Scholar 

  23. Varella MH, de Mello FG, Linden R (1999) Evidence for an antiapoptotic role of dopamine in developing retinal tissue. J Neurochem 73:485–492

    Article  PubMed  CAS  Google Scholar 

  24. Tibber MS, Whitmore AV, Jeffery G (2006) Cell division and cleavage orientation in the developing retina are regulated by L-DOPA. J Comp Neurol 496:369–381

    Article  PubMed  Google Scholar 

  25. Do Nascimento JLM, Kubrusly RCC, Reis RAM, De Mello MC, De Mello FG (1998) Atypical effect of dopamine in modulating the functional inhibition of NMDA receptors of cultured retina cells. Eur J Pharmacol 343:103–110

    Article  PubMed  CAS  Google Scholar 

  26. Castro NG, de Mello MC, de Mello FG, Aracava Y (1999) Direct inhibition of the N-methyl-d-aspartate receptor channel by dopamine and (+)-SKF38393. Br J Pharmacol 126:1847–1855

    Article  PubMed  CAS  Google Scholar 

  27. Wang HY, Undie AS, Friedman E (1995) Evidence for the coupling of Gq protein to D1-like dopamine sites in rat striatum: possible role in dopamine-mediated inositol phosphate formation. Mol Pharmacol 48:988–994

    PubMed  CAS  Google Scholar 

  28. Reis RA, Kubrusly RC, de Mello MC, de Mello FG (1995) Transient coupling of NMDA receptor with ip3 production in cultured cells of the avian retina. Neurochem Int 26:375–380

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from FAPERJ, CNPq, PROPPi-UFF and INCT-CNPq (INNT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Augusto de Melo Reis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ventura, A.L.M., de Mello, F.G., de Melo Reis, R.A. (2013). Methods of Dopamine Research in Retina Cells. In: Kabbani, N. (eds) Dopamine. Methods in Molecular Biology, vol 964. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-251-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-251-3_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-250-6

  • Online ISBN: 978-1-62703-251-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics