Skip to main content

Advertisement

Log in

The molecular basis of induction and formation of tunneling nanotubes

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Tunneling nanotubes (TNTs) and associated structures are recently recognized structures for intercellular communication. They are F-actin-containing thin protrusions of the plasma membrane of a cell and allow a direct physical connection to the plasma membranes of remote cells. TNTs and associated structures serve as mediators for intercellular transfer of organelles as well as membrane components and cytoplasmic molecules. Moreover, several pathogens have been shown to exploit these structures to spread among cells. Because of their contribution to normal cellular functions and importance in pathological conditions, studies on TNTs and related structures have accelerated over the past few years. These studies have revealed key molecules for their induction and/or formation; HIV Nef and M-Sec can induce the formation of TNTs in coordination with the remodeling of the actin cytoskeleton and vesicle trafficking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aggarwal A, Iemma TL, Shih I, Newsome TP, McAllery S, Cunningham AL, Turville SG (2012) Mobilization of HIV spread by diaphanous 2 dependent filopodia in infected dendritic cells. PLoS Pathog 8:e1002762

    Article  PubMed  CAS  Google Scholar 

  • Arbibe L, Mira JP, Teusch N, Kline L, Guha M, Mackman N, Godowski PJ, Ulevitch RJ, Knaus UG (2000) Toll-like receptor 2-mediated NF-kappa B activation requires a Rac1-dependent pathway. Nat Immunol 1:533–540

    Article  PubMed  CAS  Google Scholar 

  • Arkwright PD, Luchetti F, Tour J, Roberts C, Ayub R, Morales AP, Rodriguez JJ, Gilmore A, Canonico B, Papa S, Esposti MD (2011) Fas stimulation of T lymphocytes promotes rapid intercellular exchange of death signals via membrane nanotubes. Cell Res 20:72–88

    Article  Google Scholar 

  • Bangham CR (2003) The immune control and cell-to-cell spread of human T-lymphotropic virus type 1. J Gen Virol 84:3177–3189

    Article  PubMed  CAS  Google Scholar 

  • Blagoveshchenskaya AD, Thomas L, Feliciangeli SF, Hung CH, Thomas G (2002) HIV-1 Nef downregulates MHC-I by a PACS-1- and PI3K-regulated ARF6 endocytic pathway. Cell 111:853–866

    Article  PubMed  CAS  Google Scholar 

  • Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116:167–179

    Article  PubMed  CAS  Google Scholar 

  • Chauveau A, Aucher A, Eissmann P, Vivier E, Davis DM (2010) Membrane nanotubes facilitate long-distance interactions between natural killer cells and target cells. Proc Natl Acad Sci USA 107:5545–5550

    Article  PubMed  CAS  Google Scholar 

  • Chinnery HR, Pearlman E, McMenamin PG (2008) Cutting edge: membrane nanotubes in vivo: a feature of MHC class II+ cells in the mouse cornea. J Immunol 180:5779–5783

    PubMed  CAS  Google Scholar 

  • Ciani E, Virgili M, Contestabile A (2002) Akt pathway mediates a cGMP-dependent survival role of nitric oxide in cerebellar granule neurones. J Neurochem 81:218–228

    Article  PubMed  CAS  Google Scholar 

  • Davis DM, Sowinski S (2008) Membrane nanotubes: dynamic long-distance connections between animal cells. Nat Rev 9:431–436

    Article  CAS  Google Scholar 

  • Eugenin EA, Branes MC, Berman JW, Saez JC (2003) TNF-alpha plus IFN-gamma induce connexin43 expression and formation of gap junctions between human monocytes/macrophages that enhance physiological responses. J Immunol 170:1320–1328

    PubMed  CAS  Google Scholar 

  • Eugenin EA, Gaskill PJ, Berman JW (2009) Tunneling nanotubes (TNT) are induced by HIV-infection of macrophages: a potential mechanism for intercellular HIV trafficking. Cell Immunol 254:142–148

    Article  PubMed  CAS  Google Scholar 

  • Fackler OT, Kienzle N, Kremmer E, Boese A, Schramm B, Klimkait T, Kücherer C, Mueller-Lantzsch N (1997) Association of human immunodeficiency virus Nef protein with actin is myristoylation dependent and influences its subcellular localization. Eur J Biochem 247:843–851

    Article  PubMed  CAS  Google Scholar 

  • Fukumoto R, Dundr M, Nicot C, Adams A, Valeri VW, Samelson LE, Franchini G (2007) Inhibition of T-cell receptor signal transduction and viral expression by the linker for activation of T cells-interacting p12I protein of human T-cell leukemia/lymphoma virus type 1. J Virol 81:9088–9099

    Article  PubMed  CAS  Google Scholar 

  • Fukumoto R, Andresen V, Bialuk I, Cecchinato V, Walser JC, Valeri VW, Nauroth JM, Gessain A, Nicot C, Franchini G (2009) In vivo genetic mutations define predominant functions of the human T-cell leukemia/lymphoma virus p12I protein. Blood 113:3726–3734

    Article  PubMed  CAS  Google Scholar 

  • Galkina SI, Romanova JM, Stadnichuk VI, Molotkovsky JG, Sud'ina GF, Klein T (2009) Nitric oxide-induced membrane tubulovesicular extensions (cytonemes) of human neutrophils catch and hold Salmonella enterica serovar typhimurium at a distance from the cell surface. FEMS Immunol Med Microbiol 56:162–171

    Article  PubMed  CAS  Google Scholar 

  • Galkina SI, Stadnichuk VI, Molotkovsky JG, Romanova JM, Sud'ina GF, Klein T (2010) Microbial alkaloid staurosporine induces formation of nanometer-wide membrane tubular extensions (cytonemes, membrane tethers) in human neutrophils. Cell Adhes Migr 4:32–38

    Article  Google Scholar 

  • Galkina SI, Romanova JM, Bragina EE, Tiganova IG, Stadnichuk VI, Alekseeva NV, Polyakov VY, Klein T (2011) Membrane tubules attach Salmonella typhimurium to eukaryotic cells and bacteria. FEMS Immunol Med Microbiol 61:114–124

    Article  PubMed  CAS  Google Scholar 

  • Galkina SI, Fedorova NV, Serebryakova MV, Romanova JM, Golyshev SA, Stadnichuk VI, Baratova LA, Sud'ina GF, Klein T (2012) Proteome analysis identified human neutrophil membrane tubulovesicular extensions (cytonemes, membrane tethers) as bactericide trafficking. Biochim Biophys Acta

  • Gerdes HH, Carvalho RN (2008) Intercellular transfer mediated by tunneling nanotubes. Curr Opin Cell Biol 20:470–475

    Article  PubMed  CAS  Google Scholar 

  • Gousset K, Schiff E, Langevin C, Marijanovic Z, Caputo A, Browman DT, Chenouard N, de Chaumont F, Martino A, Enninga J, Olivo-Marin JC, Mannel D, Zurzolo C (2009) Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 11:328–336

    Article  PubMed  CAS  Google Scholar 

  • Hase K, Kimura S, Takatsu H, Ohmae M, Kawano S, Kitamura H, Ito M, Watarai H, Hazelett CC, Yeaman C, Ohno H (2009) M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex. Nat Cell Biol 11:1427–1432

    Article  PubMed  CAS  Google Scholar 

  • He B, Guo W (2009) The exocyst complex in polarized exocytosis. Curr Opin Cell Biol 21:537–542

    Article  PubMed  CAS  Google Scholar 

  • Hung CH, Thomas L, Ruby CE, Atkins KM, Morris NP, Knight ZA, Scholz I, Barklis E, Weinberg AD, Shokat KM, Thomas G (2007) HIV-1 Nef assembles a Src family kinase-ZAP-70/Syk-PI3K cascade to downregulate cell-surface MHC-I. Cell Host Microbe 1:121–133

    Article  PubMed  CAS  Google Scholar 

  • Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K, Rowlands DJ, Quadri SK, Bhattacharya S, Bhattacharya J (2012) Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 18:759–765

    Article  PubMed  CAS  Google Scholar 

  • Jin R, Junutula JR, Matern HT, Ervin KE, Scheller RH, Brunger AT (2005) Exo84 and Sec5 are competitive regulatory Sec6/8 effectors to the RalA GTPase. EMBO J 24:2064–2074

    Article  PubMed  CAS  Google Scholar 

  • Kaminchik J, Margalit R, Yaish S, Drummer H, Amit B, Sarver N, Gorecki M, Panet A (1994) Cellular distribution of HIV type 1 Nef protein: identification of domains in Nef required for association with membrane and detergent-insoluble cellular matrix. AIDS Res Hum Retrovir 10:1003–1010

    Article  PubMed  CAS  Google Scholar 

  • Kimura S, Hase K, Ohno H (2012) Tunneling nanotubes: emerging view of their molecular components and formation mechanisms. Exp Cell Res 318:1699–1706

    Article  PubMed  CAS  Google Scholar 

  • Lehmann MJ, Sherer NM, Marks CB, Pypaert M, Mothes W (2005) Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells. J Cell Biol 170:317–325

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Zhao Y, Sun Y, He B, Yang C, Svitkina T, Goldman YE, Guo W (2012) Exo70 stimulates the Arp2/3 complex for lamellipodia formation and directional cell migration. Curr Biol

  • Lokar M, Iglič A, Veranic P (2010) Protruding membrane nanotubes: attachment of tubular protrusions to adjacent cells by several anchoring junctions. Protoplasma 246:81–87

    Article  PubMed  Google Scholar 

  • Luchetti F, Canonico B, Arcangeletti M, Guescini M, Cesarini E, Stocchi V, Degli Esposti M, Papa S (2012) Fas signalling promotes intercellular communication in T cells. PLoS One 7:e35766

    Article  PubMed  CAS  Google Scholar 

  • Martinez AD, Eugenin EA, Branes MC, Bennett MV, Saez JC (2002) Identification of second messengers that induce expression of functional gap junctions in microglia cultured from newborn rats. Brain Res 943:191–201

    Article  PubMed  CAS  Google Scholar 

  • Moskalenko S, Henry DO, Rosse C, Mirey G, Camonis JH, White MA (2002) The exocyst is a Ral effector complex. Nat Cell Biol 4:66–72

    Article  PubMed  CAS  Google Scholar 

  • Mukerji J, Olivieri KC, Misra V, Agopian KA, Gabuzda D (2012) Proteomic analysis of HIV-1 Nef cellular binding partners reveals a role for exocyst complex proteins in mediating enhancement of intercellular nanotube formation. Retrovirology 9:33

    Article  PubMed  CAS  Google Scholar 

  • Nguyen H, Ramana CV, Bayes J, Stark GR (2001) Roles of phosphatidylinositol 3-kinase in interferon-gamma-dependent phosphorylation of STAT1 on serine 727 and activation of gene expression. J Biol Chem 276:33361–33368

    Article  PubMed  CAS  Google Scholar 

  • Nikolic DS, Lehmann M, Felts R, Garcia E, Blanchet FP, Subramaniam S, Piguet V (2011) HIV-1 activates Cdc42 and induces membrane extensions in immature dendritic cells to facilitate cell-to-cell virus propagation. Blood 118:4841–4852

    Article  PubMed  CAS  Google Scholar 

  • Nobile C, Rudnicka D, Hasan M, Aulner N, Porrot F, Machu C, Renaud O, Prevost MC, Hivroz C, Schwartz O, Sol-Foulon N (2010) HIV-1 Nef inhibits ruffles, induces filopodia, and modulates migration of infected lymphocytes. J Virol 84:2282–2293

    Article  PubMed  CAS  Google Scholar 

  • Ohta Y, Suzuki N, Nakamura S, Hartwig JH, Stossel TP (1999) The small GTPase RalA targets filamin to induce filopodia. Proc Natl Acad Sci USA 96:2122–2128

    Article  PubMed  CAS  Google Scholar 

  • Önfelt B, Nedvetzki S, Yanagi K, Davis DM (2004) Cutting edge: membrane nanotubes connect immune cells. J Immunol 173:1511–1513

    PubMed  Google Scholar 

  • Önfelt B, Nedvetzki S, Benninger RK, Purbhoo MA, Sowinski S, Hume AN, Seabra MC, Neil MA, French PM, Davis DM (2006) Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J Immunol 177:8476–8483

    PubMed  Google Scholar 

  • Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, Phinney DG (2003) Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci USA 100:8407–8411

    Article  PubMed  CAS  Google Scholar 

  • Ortiz LA, Dutreil M, Fattman C, Pandey AC, Torres G, Go K, Phinney DG (2007) Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA 104:11002–11007

    Article  PubMed  CAS  Google Scholar 

  • Oviedo-Orta E, Howard Evans W (2004) Gap junctions and connexin-mediated communication in the immune system. Biochim Biophys Acta 1662:102–112

    Article  PubMed  CAS  Google Scholar 

  • Pasquier J, Galas L, Boulange-Lecomte C, Rioult D, Bultelle F, Magal P, Webb G, Le Foll F (2012) Different modalities of intercellular membrane exchanges mediate cell-to-cell p-glycoprotein transfers in MCF-7 breast cancer cells. J Biol Chem 287:7374–7387

    Article  PubMed  CAS  Google Scholar 

  • Ranzinger J, Rustom A, Abel M, Leyh J, Kihm L, Witkowski M, Scheurich P, Zeier M, Schwenger V (2011) Nanotube action between human mesothelial cells reveals novel aspects of inflammatory responses. PLoS One 6:e29537

    Article  PubMed  CAS  Google Scholar 

  • Ruckes T, Saul D, Van Snick J, Hermine O, Grassmann R (2001) Autocrine antiapoptotic stimulation of cultured adult T-cell leukemia cells by overexpression of the chemokine I-309. Blood 98:1150–1159

    Article  PubMed  CAS  Google Scholar 

  • Rustom A (2009) Hen or egg?: some thoughts on tunneling nanotubes. Ann NY Acad Sci 1178:129–136

    Article  PubMed  CAS  Google Scholar 

  • Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH (2004) Nanotubular highways for intercellular organelle transport. Science 303:1007–1010

    Article  PubMed  CAS  Google Scholar 

  • Saito T, Yokosuka T (2006) Immunological synapse and microclusters: the site for recognition and activation of T cells. Curr Opin Immunol 18:305–313

    Article  PubMed  CAS  Google Scholar 

  • Saksela K, Cheng G, Baltimore D (1995) Proline-rich (PxxP) motifs in HIV-1 Nef bind to SH3 domains of a subset of Src kinases and are required for the enhanced growth of Nef+ viruses but not for down-regulation of CD4. EMBO J 14:484–491

    PubMed  CAS  Google Scholar 

  • Sarma V, Wolf FW, Marks RM, Shows TB, Dixit VM (1992) Cloning of a novel tumor necrosis factor-alpha-inducible primary response gene that is differentially expressed in development and capillary tube-like formation in vitro. J Immunol 148:3302–3312

    PubMed  CAS  Google Scholar 

  • Scott G, Leopardi S, Printup S, Madden BC (2002) Filopodia are conduits for melanosome transfer to keratinocytes. J Cell Sci 115:1441–1451

    PubMed  CAS  Google Scholar 

  • Sherer NM, Lehmann MJ, Jimenez-Soto LF, Horensavitz C, Pypaert M, Mothes W (2007) Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nat Cell Biol 9:310–315

    Article  PubMed  CAS  Google Scholar 

  • Sowinski S, Jolly C, Berninghausen O, Purbhoo MA, Chauveau A, Kohler K, Oddos S, Eissmann P, Brodsky FM, Hopkins C, Önfelt B, Sattentau Q, Davis DM (2008) Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat Cell Biol 10:211–219

    Article  PubMed  CAS  Google Scholar 

  • Sowinski S, Alakoskela JM, Jolly C, Davis DM (2011) Optimized methods for imaging membrane nanotubes between T cells and trafficking of HIV-1. Methods 53:27–33

    Article  PubMed  CAS  Google Scholar 

  • Spees JL, Olson SD, Whitney MJ, Prockop DJ (2006) Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci USA 103:1283–1288

    Article  PubMed  CAS  Google Scholar 

  • Subauste MC, Von Herrath M, Benard V, Chamberlain CE, Chuang TH, Chu K, Bokoch GM, Hahn KM (2000) Rho family proteins modulate rapid apoptosis induced by cytotoxic T lymphocytes and Fas. J Biol Chem 275:9725–9733

    Article  PubMed  CAS  Google Scholar 

  • Sugihara K, Asano S, Tanaka K, Iwamatsu A, Okawa K, Ohta Y (2002) The exocyst complex binds the small GTPase RalA to mediate filopodia formation. Nat Cell Biol 4:73–78

    Article  PubMed  CAS  Google Scholar 

  • Twiss JL, Fainzilber M (2009) Ribosomes in axons–scrounging from the neighbors? Trends Cell Biol 19:236–243

    Article  PubMed  CAS  Google Scholar 

  • Van Prooyen N, Gold H, Andresen V, Schwartz O, Jones K, Ruscetti F, Lockett S, Gudla P, Venzon D, Franchini G (2010) Human T-cell leukemia virus type 1 p8 protein increases cellular conduits and virus transmission. Proc Natl Acad Sci USA 107:20738–20743

    Article  PubMed  Google Scholar 

  • Veranic P, Lokar M, Schutz GJ, Weghuber J, Wieser S, Hagerstrand H, Kralj-Iglic V, Iglic A (2008) Different types of cell-to-cell connections mediated by nanotubular structures. Biophys J 95:4416–4425

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Cui J, Sun X, Zhang Y (2011) Tunneling-nanotube development in astrocytes depends on p53 activation. Cell Death Differ 18:732–742

    Article  PubMed  CAS  Google Scholar 

  • Watkins SC, Salter RD (2005) Functional connectivity between immune cells mediated by tunneling nanotubules. Immunity 23:309–318

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Santini PA, Sullivan JS, He B, Shan M, Ball SC, Dyer WB, Ketas TJ, Chadburn A, Cohen-Gould L, Knowles DM, Chiu A, Sanders RW, Chen K, Cerutti A (2009) HIV-1 evades virus-specific IgG2 and IgA responses by targeting systemic and intestinal B cells via long-range intercellular conduits. Nat Immunol 10:1008–1017

    Article  PubMed  CAS  Google Scholar 

  • Yasuda K, Khandare A, Burianovskyy L, Maruyama S, Zhang F, Nasjletti A, Goligorsky MS (2011) Tunneling nanotubes mediate rescue of prematurely senescent endothelial cells by endothelial progenitors: exchange of lysosomal pool. Aging 3:597–608

    PubMed  CAS  Google Scholar 

  • Zhu D, Tan KS, Zhang X, Sun AY, Sun GY, Lee JC (2005) Hydrogen peroxide alters membrane and cytoskeleton properties and increases intercellular connections in astrocytes. J Cell Sci 118:3695–3703

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Dr. Peter D. Burrows for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Ohno.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental video 1

Time-lapse video microscopy of GFP-M-Sec-transfected HeLa cells. (MOV 259 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimura, S., Hase, K. & Ohno, H. The molecular basis of induction and formation of tunneling nanotubes. Cell Tissue Res 352, 67–76 (2013). https://doi.org/10.1007/s00441-012-1518-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1518-1

Keywords

Navigation