Skip to main content

Advertisement

Log in

From in vitro culture to in vivo models to study testis development and spermatogenesis

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The testis is a complex organ playing host to one of the most intricate mass cell divisions occurring in postnatal life. Since the beginning of the 20th century, great efforts have been made to recapitulate spermatogenesis and elucidate spermatogonial stem cell function. These efforts have resulted in the development of a variety of model systems that provide invaluable knowledge regarding testis organogenesis, key cell types and their interactions, and signaling pathways controlling testis function. The goal of this review is to elaborate on the evolution of the techniques available from in vitro culture systems to in vivo bioassays by providing up to date information and weighing their particular strengths and weaknesses. Each technique offers a different approach to the elucidation of male reproduction, the enhancement of germ-lineage genetic manipulation, the preservation of gametes, the restoration of fertility, and the improvement in our understanding of stem cell biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson R, Fassler R, Georges-Labouesse E, Hynes RO, Bader BL, Kreidberg JA, Schaible K, Heasman J, Wylie C (1999) Mouse primordial germ cells lacking beta1 integrins enter the germline but fail to migrate normally to the gonads. Development 126:1655–1664

    PubMed  CAS  Google Scholar 

  • Arregui L, Rathi R, Megee SO, Honaramooz A, Gomendio M, Roldan ERS, Dobrinski I (2008) Xenografting of sheep testis tissue and isolated cells as a model for preservation of genetic material from endangered ungulates. Reproduction 136:85–93

    PubMed  CAS  Google Scholar 

  • Ballow D, Meistrich M, Matzuk M, Rajkovic A (2006) Sohlh1 is essential for spermatogonial differentiation. Dev Biol 294:161–167

    PubMed  CAS  Google Scholar 

  • Bordlein A, Scherthan H, Nelkenbrecher C, Molter T, Bosl MR, Dippold C, Birke K, Kinkley S, Staege H, Will H, Winterpacht A (2011) SPOC1 (PHF13) is required for spermatogonial stem cell differentiation and sustained spermatogenesis. J Cell Sci 124:3137–3148

    PubMed  Google Scholar 

  • Brinster RL, Zimmermann JW (1994) Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci USA 91:11298–11302

    PubMed  CAS  Google Scholar 

  • Buaas FW, Kirsh AL, Sharma M, McLean DJ, Morris JL, Griswold MD, Rooij DG de, Braun RE (2004) Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet 36:647–652

    PubMed  CAS  Google Scholar 

  • Caires KC, Avila J de, McLean DJ (2009) Vascular endothelial growth factor regulates germ cell survival during establishment of spermatogenesis in the bovine testis. Reproduction 138:667–677

    PubMed  CAS  Google Scholar 

  • Capel B, Albrecht KH, Washburn LL, Eicher EM (1999) Migration of mesonephric cells into the mammalian gonad depends on Sry. Mech Dev 84:127–131

    PubMed  CAS  Google Scholar 

  • Champy C (1920) Quelques résultats de la méthode de culture des tissus. VI. Le testicule. Arch Zool Exp Gen 60:461–500

    Google Scholar 

  • Chen C, Ouyang W, Grigura V, Zhou Q, Carnes K, Lim H, Zhao GQ, Arber S, Kurpios N, Murphy TL (2005) ERM is required for transcriptional control of the spermatogonial stem cell niche. Nature 436:1030–1034

    PubMed  CAS  Google Scholar 

  • Chiarini-Garcia H, Hornick JR, Griswold MD, Russell LD (2001) Distribution of type A spermatogonia in the mouse is not random. Biol Reprod 65:1179–1185

    PubMed  CAS  Google Scholar 

  • Dobrinski I (2005a) Germ cell transplantation. Semin Reprod Med 23:257–265

    PubMed  Google Scholar 

  • Dobrinski I (2005b) Germ cell transplantation and testis tissue xenografting in domestic animals. Anim Reprod Sci 89:137–145

    PubMed  Google Scholar 

  • Dufour JM, Hamilton M, Rajotte RV, Korbutt GS (2005) Neonatal porcine Sertoli cells inhibit human natural antibody-mediated lysis. Biol Reprod 72:1224–1231

    PubMed  CAS  Google Scholar 

  • França LR, Ogawa T, Avarbock MR, Brinster RL, Russell LD (1998) Germ cell genotype controls cell cycle during spermatogenesis in the rat. Biol Reprod 59:1371–1377

    PubMed  Google Scholar 

  • Fujita K, Tsujimura A, Miyagawa Y, Kiuchi H, Matsuoka Y, Takao T, Takada S, Nonomura N, Okuyama A (2006) Isolation of germ cells from leukemia and lymphoma cells in a human in vitro model: potential clinical application for restoring human fertility after anticancer therapy. Cancer Res 66:11166–11171

    PubMed  CAS  Google Scholar 

  • Gassei K, Schlatt S (2007) Testicular morphogenesis. Ann N Y Acad Sci 1120:152–167

    PubMed  Google Scholar 

  • Geens M, Van de Velde H, De Block G, Goossens E, Van Steirteghem A, Tournaye H (2006) The efficiency of magnetic-activated cell sorting and fluorescence-activated cell sorting in the decontamination of testicular cell suspensions in cancer patients. Hum Reprod 22:733–742

    PubMed  Google Scholar 

  • Gourdon JC, Travis AJ (2011) Spermatogenesis in ferret testis xenografts: a new model. Comp Med 61:145–149

    PubMed  CAS  Google Scholar 

  • Hadley MA, Byers SW, Suárez-Quian CA, Kleinman HK, Dym M (1985) Extracellular matrix regulates Sertoli cell differentiation, testicular cord formation, and germ cell development in vitro. J Cell Biol 101:1511–1522

    PubMed  CAS  Google Scholar 

  • Hajkova P (2011) Epigenetic reprogramming in the germline: towards the ground state of the epigenome. Philos Trans R Soc Lond B Biol Sci 366:2266–2273

    PubMed  CAS  Google Scholar 

  • Hamra FK, Gatlin J, Chapman KM, Grellhesl DM, Garcia JV, Hammer RE, Garbers DL (2002) Production of transgenic rats by lentiviral transduction of male germ-line stem cells. Proc Natl Acad Sci USA 99:14931–14936

    PubMed  CAS  Google Scholar 

  • Hao J, Yamamoto M, Richardson TE, Chapman KM, Denard BS, Hammer RE, Zhao GQ, Hamra FK (2008) Sohlh2 knockout mice are male-sterile because of degeneration of differentiating type A spermatogonia. Stem Cells 26:1587–1597

    PubMed  CAS  Google Scholar 

  • Hayashi K, Sousa Lopes SMC de, Surani MA (2007) Germ cell specification in mice. Science 316:394–396

    PubMed  CAS  Google Scholar 

  • Hermann BP, Sukhwani M, Salati J, Sheng Y, Chu T, Orwig KE (2011) Separating spermatogonia from cancer cells in contaminated prepubertal primate testis cell suspensions. Hum Reprod 12:3222-3231

    Google Scholar 

  • Herrid M, Vignarajan S, Davey R, Dobrinski I, Hill JR (2006) Successful transplantation of bovine testicular cells to heterologous recipients. Reproduction 132:617–624

    PubMed  CAS  Google Scholar 

  • Hess RA, Cooke PS, Hofmann MC, Murphy KM (2006) Mechanistic insights into the regulation of the spermatogonial stem cell niche. Cell Cycle 5:1164–1170

    PubMed  CAS  Google Scholar 

  • Hofmann MC, Braydich-Stolle L, Dym M (2005) Isolation of male germ-line stem cells; influence of GDNF. Dev Biol 279:114–124

    PubMed  CAS  Google Scholar 

  • Honaramooz A, Megee SO, Dobrinski I (2002a) Germ cell transplantation in pigs. Biol Reprod 66:21–28

    PubMed  CAS  Google Scholar 

  • Honaramooz A, Snedaker A, Boiani M, Schöler H, Dobrinski I, Schlatt S (2002b) Sperm from neonatal mammalian testes grafted in mice. Nature 418:778–781

    PubMed  CAS  Google Scholar 

  • Honaramooz A, Behboodi E, Megee SO, Overton SA, Galantino-Homer H, Echelard Y, Dobrinski I (2003) Fertility and germline transmission of donor haplotype following germ cell transplantation in immunocompetent goats. Biol Reprod 69:1260–1264

    PubMed  CAS  Google Scholar 

  • Honaramooz A, Li MW, Penedo MC, Meyers S, Dobrinski I (2004) Accelerated maturation of primate testis by xenografting into mice. Biol Reprod 70:1500–1503

    PubMed  CAS  Google Scholar 

  • Honaramooz A, Megee SO, Rathi R, Dobrinski I (2007) Building a testis: formation of functional testis tissue after transplantation of isolated porcine (Sus scrofa) testis cells. Biol Reprod 76:43–47

    PubMed  CAS  Google Scholar 

  • Ito R, Abe SI (1999) FSH-initiated differentiation of newt spermatogonia to primary spermatocytes in germ-somatic cell reaggregates cultured within a collagen matrix. Int J Dev Biol 43:111–116

    PubMed  CAS  Google Scholar 

  • Izadyar F, Den Ouden K, Creemers LB, Posthuma G, Parvinen M, Rooij DG de (2003) Proliferation and differentiation of bovine type A spermatogonia during long-term culture. Biol Reprod 68:272–281

    PubMed  CAS  Google Scholar 

  • Jahnukainen K, Hou M, Petersen C, Setchell B, Söder O (2001) Intratesticular transplantation of testicular cells from leukemic rats causes transmission of leukemia. Cancer Res 61:706–710

    PubMed  CAS  Google Scholar 

  • Jahnukainen K, Ehmcke J, Nurmio M, Schlatt S (2007) Irradiation causes acute and long-term spermatogonial depletion in cultured and xenotransplanted testicular tissue from juvenile nonhuman primates. Endocrinology 148:5541–5548

    PubMed  CAS  Google Scholar 

  • Jiang FX, Short R (1995) Male germ cell transplantation in rats: apparent synchronization of spermatogenesis between host and donor seminiferous epithelia. Int J Androl 18:326–330

    PubMed  CAS  Google Scholar 

  • Kanatsu-Shinohara M, Ogonuki N, Inoue K, Miki H, Ogura A, Toyokuni S, Shinohara T (2003a) Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod 69:612–616

    PubMed  CAS  Google Scholar 

  • Kanatsu-Shinohara M, Ogonuki N, Inoue K, Ogura A, Toyokuni S, Shinohara T (2003b) Restoration of fertility in infertile mice by transplantation of cryopreserved male germline stem cells. Hum Reprod 18:2660–2667

    PubMed  CAS  Google Scholar 

  • Kanatsu-Shinohara M, Takehashi M, Takashima S, Lee J, Morimoto H, Chuma S, Raducanu A, Nakatsuji N, Fässler R, Shinohara T (2008) Homing of mouse spermatogonial stem cells to germline niche depends on [beta]1-integrin. Cell Stem Cell 3:533–542

    PubMed  CAS  Google Scholar 

  • Kanatsu-Shinohara M, Inoue K, Ogonuki N, Morimoto H, Ogura A, Shinohara T (2011) Serum- and feeder-free culture of mouse germline stem cells. Biol Reprod 84:97–105

    PubMed  CAS  Google Scholar 

  • Kaucher AV, Oatley MJ, Oatley JM (2012) NEUROG3 is a critical downstream effector for STAT3-regulated differentiation of mammalian stem and progenitor spermatogonia. Biol Reprod 86:164

    PubMed  Google Scholar 

  • Kawasaki T, Imura F, Nakada A, Kubota H, Sakamaki K, Abe SI, Takamune K (2006) Functional demonstration of the ability of a primary spermatogonium as a stem cell by tracing a single cell destiny in Xenopus laevis. Dev Growth Differ 48:525–535

    PubMed  Google Scholar 

  • Kawasaki T, Saito K, Shinya M, Olsen LC, Sakai N (2010) Regeneration of spermatogenesis and production of functional sperm by grafting of testicular cell aggregates in zebrafish. Biol Reprod 83:533–539

    PubMed  CAS  Google Scholar 

  • Kee K, Angeles VT, Flores M, Nguyen HN, Reijo Pera RA (2009) Human DAZL, DAZ and BOULE genes modulate primordial germ-cell and haploid gamete formation. Nature 462:222–225

    PubMed  CAS  Google Scholar 

  • Kim Y, Selvaraj V, Dobrinski I, Lee H, Mcentee MC, Travis AJ (2006) Recipient preparation and mixed germ cell isolation for spermatogonial stem cell transplantation in domestic cats. J Androl 27:248–256

    PubMed  Google Scholar 

  • Kim Y, Selvaraj V, Pukazhenthi B, Travis AJ (2007) Effect of donor age on success of spermatogenesis in feline testis xenografts. Reprod Fertil Dev 19:869–876

    PubMed  Google Scholar 

  • Kim Y, Turner D, Nelson J, Dobrinski I, McEntee M, Travis AJ (2008) Production of donor-derived sperm after spermatogonial stem cell transplantation in the dog. Reproduction 136:823–831

    PubMed  CAS  Google Scholar 

  • Kita K, Watanabe T, Ohsaka K, Hayashi H, Kubota Y, Nagashima Y, Aoki I, Taniguchi H, Noce T, Inoue K (2007) Production of functional spermatids from mouse germline stem cells in ectopically reconstituted seminiferous tubules. Biol Reprod 76:211–217

    PubMed  CAS  Google Scholar 

  • Kubota H, Avarbock MR, Brinster RL (2004) Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci USA 101:16489–16494

    PubMed  CAS  Google Scholar 

  • La Salle S, Mertineit C, Taketo T, Moens PB, Bestor TH, Trasler JM (2004) Windows for sex-specific methylation marked by DNA methyltransferase expression profiles in mouse germ cells. Dev Biol 268:403–415

    PubMed  Google Scholar 

  • Lee JH, Kim HJ, Kim H, Lee SJ, Gye MC (2006) In vitro spermatogenesis by three-dimensional culture of rat testicular cells in collagen gel matrix. Biomaterials 27:2845–2853

    PubMed  CAS  Google Scholar 

  • Lellouch A, Segal A (2001) Gerontology and endocrinology at the beginning of the 20th century: Dr. Voronoff (1866–1951). Hist Sci Med 35:425–434

    PubMed  CAS  Google Scholar 

  • Livera G, Delbes G, Pairault C, Rouiller-Fabre V, Habert R (2006) Organotypic culture, a powerful model for studying rat and mouse fetal testis development. Cell Tissue Res 324:507–521

    PubMed  Google Scholar 

  • Matsui Y (2010) The molecular mechanisms regulating germ cell development and potential. J Androl 31:61–65

    PubMed  CAS  Google Scholar 

  • McEvoy T, Alink F, Moreira V, Watt R, Powell K (2006) Embryo technologies and animal health-consequences for the animal following ovum pick-up, in vitro embryo production and somatic cell nuclear transfer. Theriogenology 65:926–942

    PubMed  CAS  Google Scholar 

  • McLaren A (2003) Primordial germ cells in the mouse. Dev Biol 262:1–15

    PubMed  CAS  Google Scholar 

  • McLaren A, Lawson KA (2005) How is the mouse germ cell lineage established? Differentiation 73:435–437

    PubMed  CAS  Google Scholar 

  • Meng X, Lindahl M, Hyvönen ME, Parvinen M, Rooij DG de, Hess MW, Raatikainen-Ahokas A, Sainio K, Rauvala H, Lakso M (2000) Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287:1489–1493

    PubMed  CAS  Google Scholar 

  • Mota PC, Ramalho-Santos J, Schlatt S (2010) Xenografting as a tool to preserve endangered species: outcomes and challenges in model systems. Vet Med Int 2011:629409

    PubMed  Google Scholar 

  • Nagano M, Brinster CJ, Orwig KE, Ryu BY, Avarbock MR, Brinster RL (2001a) Transgenic mice produced by retroviral transduction of male germ-line stem cells. Proc Natl Acad Sci USA 98:13090–13095

    PubMed  CAS  Google Scholar 

  • Nagano M, McCarrey JR, Brinster RL (2001b) Primate spermatogonial stem cells colonize mouse testes. Biol Reprod 64:1409–1416

    PubMed  CAS  Google Scholar 

  • Nagano M, Ryu BY, Brinster CJ, Avarbock MR, Brinster RL (2003) Maintenance of mouse male germ line stem cells in vitro. Biol Reprod 68:2207–2214

    PubMed  CAS  Google Scholar 

  • Nakai M, Kaneko H, Somfai T, Maedomari N, Ozawa M, Noguchi J, Ito J, Kashiwazaki N, Kikuchi K (2010) Production of viable piglets for the first time using sperm derived from ectopic testicular xenografts. Reproduction 139:331–335

    PubMed  CAS  Google Scholar 

  • Naughton CK, Jain S, Strickland AM, Gupta A, Milbrandt J (2006) Glial cell-line derived neurotrophic factor-mediated RET signaling regulates spermatogonial stem cell fate. Biol Reprod 74:314–321

    PubMed  CAS  Google Scholar 

  • Oatley J, Avila D de, McLean D, Griswold M, Reeves J (2002) Transplantation of bovine germinal cells into mouse testes. J Anim Sci 80:1925–1931

    PubMed  CAS  Google Scholar 

  • Oatley JM, Avila DM de, Reeves JJ, McLean DJ (2004) Spermatogenesis and germ cell transgene expression in xenografted bovine testicular tissue. Biol Reprod 71:494–501

    PubMed  CAS  Google Scholar 

  • Ogawa T, Dobrinski I, Brinster R (1999) Recipient preparation is critical for spermatogonial transplantation in the rat. Tissue Cell 31:461–472

    PubMed  CAS  Google Scholar 

  • Ohinata Y, Ohta H, Shigeta M, Yamanaka K, Wakayama T, Saitou M (2009) A signaling principle for the specification of the germ cell lineage in mice. Cell 137:571–584

    PubMed  CAS  Google Scholar 

  • Ohta H, Yomogida K, Dohmae K, Nishimune Y (2000) Regulation of proliferation and differentiation in spermatogonial stem cells: the role of c-kit and its ligand SCF. Development 127:2125–2131

    PubMed  CAS  Google Scholar 

  • Paris MCJ, Snow M, Cox SL, Shaw JM (2004) Xenotransplantation: a tool for reproductive biology and animal conservation? Theriogenology 61:277–291

    PubMed  Google Scholar 

  • Rathi R, Honaramooz A, Zeng W, Turner R, Dobrinski I (2006) Germ cell development in equine testis tissue xenografted into mice. Reproduction 131:1091–1098

    PubMed  CAS  Google Scholar 

  • Raverot G, Weiss J, Park SY, Hurley L, Jameson JL (2005) Sox3 expression in undifferentiated spermatogonia is required for the progression of spermatogenesis. Dev Biol 283:215–225

    PubMed  CAS  Google Scholar 

  • Resnick JL, Bixler LS, Cheng L, Donovan PJ (1992) Long-term proliferation of mouse primordial germ cells in culture. Nature 359:550–551

    PubMed  CAS  Google Scholar 

  • Rodriguez-Sosa JR, Dobrinski I (2009) Recent developments in testis tissue xenografting. Reproduction 138:187–194

    PubMed  CAS  Google Scholar 

  • Rodriguez-Sosa JR, Dobson H, Hahnel A (2006) Isolation and transplantation of spermatogonia in sheep. Theriogenology 66:2091–2103

    PubMed  Google Scholar 

  • Rooij DG de (1998) Stem cells in the testis. Int J Exp Pathol 79:67–80

    PubMed  Google Scholar 

  • Rygaard J, Poulsen CO (1969) Heterotransplantation of a human malignant tumour to nude mice. Acta Pathol Microbiol Scand 77:758–760

    PubMed  CAS  Google Scholar 

  • Sato T, Katagiri K, Gohbara A, Inoue K, Ogonuki N, Ogura A, Kubota Y, Ogawa T (2011) In vitro production of functional sperm in cultured neonatal mouse testes. Nature 471:504–507

    PubMed  CAS  Google Scholar 

  • Schlatt S, Honaramooz A, Ehmcke J, Goebell P, Rübben H, Dhir R, Dobrinski I, Patrizio P (2006) Limited survival of adult human testicular tissue as ectopic xenograft. Hum Reprod 21:384–389

    PubMed  CAS  Google Scholar 

  • Schlatt S, Ehmcke J, Jahnukainen K (2009) Testicular stem cells for fertility preservation: preclinical studies on male germ cell transplantation and testicular grafting. Pediatr Blood Cancer 53:274–280

    PubMed  Google Scholar 

  • Schlatt S, Gassei K, Westernströer B, Ehmcke J (2010a) Modulating testicular mass in xenografting: a model to explore testis development and endocrine function.Endocrinology 151:4018-4023

    PubMed  CAS  Google Scholar 

  • Schlatt S, Westernströer B, Gassei K, Ehmcke J (2010b) Donor-host involvement in immature rat testis xenografting into nude mouse hosts.Biol Reprod 82:888–895

    PubMed  CAS  Google Scholar 

  • Seandel M, James D, Shmelkov SV, Falciatori I, Kim J, Chavala S, Scherr DS, Zhang F, Torres R, Gale NW, Yancopoulos GD, Murphy A, Valenzuela DM, Hobbs RM, Pandolfi PP, Rafii S (2007) Generation of functional multipotent adult stem cells from GPR125+ germline progenitors. Nature 449:346–350

    PubMed  CAS  Google Scholar 

  • Sekido R, Lovell-Badge R (2008) Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 453:930–934

    PubMed  CAS  Google Scholar 

  • Selawry H, Cameron D (1993) Sertoli cell-enriched fractions in successful islet cell transplantation. Cell Transplant 2:123–129

    PubMed  CAS  Google Scholar 

  • Skakkebaek N, Jensen G, Povlsen C, Rygaard J (1974) Heterotransplantation of human foetal testicular and ovarian tissue to the mouse mutant nude: a preliminary study. Acta Obstet Gynecol Scand 53:73–75

    Google Scholar 

  • Steinberger E, Steinberger A, Perloff WH (1964a) Initiation of spermatogenesis in vitro.Endocrinology 74:788–792

    PubMed  CAS  Google Scholar 

  • Steinberger E, Steinberger A, Perloff WH (1964b) Studies on growth in organ culture of testicular tissue from rats of various ages.Anat Rec 148:581–589

    PubMed  CAS  Google Scholar 

  • Stukenborg JB, Schlatt S, Simoni M, Yeung CH, Elhija MA, Luetjens CM, Huleihel M, Wistuba J (2009) New horizons for in vitro spermatogenesis? An update on novel three-dimensional culture systems as tools for meiotic and post-meiotic differentiation of testicular germ cells. Mol Hum Reprod 15:521–529

    PubMed  Google Scholar 

  • Tagelenbosch RAJ, Rooij DG de (1993) A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat Res 290:193–200

    Google Scholar 

  • Tam PPL, Zhou SX (1996) The allocation of epiblast cells to ectodermal and germ-line lineages is influenced by the position of the cells in the gastrulating mouse embryo. Dev Biol 178:124–132

    PubMed  CAS  Google Scholar 

  • Toebosch A, Brussée R, Verkerk A, Grootegoed J (1989) Quantitative evaluation of the maintenance and development of spermatocytes and round spermatids in cultured tubule fragments from immature rat testis. Int J Androl 12:360–374

    PubMed  CAS  Google Scholar 

  • Trowell OA (1959) The culture of mature organs in a synthetic medium. Exp Cell Res 16:118–147

    PubMed  CAS  Google Scholar 

  • Tsuda M, Sasaoka Y, Kiso M, Abe K, Haraguchi S et al (2003) Conserved role of nanos proteins in germ cell development. Science 301:1239–1241

    Google Scholar 

  • Tyagi G, Carnes K, Morrow C, Kostereva NV, Ekman GC, Meling DD, Hostetler C, Griswold M, Murphy KM, Hess RA (2009) Loss of Etv5 decreases proliferation and RET levels in neonatal mouse testicular germ cells and causes an abnormal first wave of spermatogenesis. Biol Reprod 81:258–266

    PubMed  CAS  Google Scholar 

  • Van Saen D, Goossens E, Bourgain C, Ferster A, Tournaye H (2011) Meiotic activity in orthotopic xenografts derived from human postpubertal testicular tissue. Hum Reprod 26:282–293

    PubMed  Google Scholar 

  • Watanabe T, Hayashi H, Kita K, Kubota Y, Ogawa T (2009) Ectopic porcine spermatogenesis in murine subcutis: tissue grafting versus cell-injection methods. Asian J Androl 11:317–323

    PubMed  Google Scholar 

  • Watson C, Tam P (2001) Cell lineage determination in the mouse. Cell Struct Funct 26:123–129

    PubMed  CAS  Google Scholar 

  • Wyatt C, Law L, Magnuson J, Griswold M, Magnuson N (1988) Suppression of lymphocyte proliferation by proteins secreted by cultured Sertoli cells. J Reprod Immunol 14:27–40

    PubMed  CAS  Google Scholar 

  • Wyns C, Curaba M, Martinez-Madrid B, Van Langendonckt A, François-Xavier W, Donnez J (2007) Spermatogonial survival after cryopreservation and short-term orthotopic immature human cryptorchid testicular tissue grafting to immunodeficient mice. Hum Reprod 22:1603–1611

    PubMed  Google Scholar 

  • Yoshida S, Sukeno M, Nakagawa T, Ohbo K, Nagamatsu G, Suda T, Y-i N (2006) The first round of mouse spermatogenesis is a distinctive program that lacks the self-renewing spermatogonia stage. Development 133:1495–1505

    PubMed  CAS  Google Scholar 

  • Yoshida S, Sukeno M, Nabeshima Y (2007) A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis. Science 317:1722–1726

    PubMed  CAS  Google Scholar 

  • Zeng W, Avelar GF, Rathi R, Franca LR, Dobrinski I (2006) The length of the spermatogenic cycle is conserved in porcine and ovine testis xenografts. J Androl 27:527–533

    PubMed  Google Scholar 

  • Zeng W, Rathi R, Pan H, Dobrinski I (2007) Comparison of global gene expression between porcine testis tissue xenografts and porcine testis in situ. Mol Reprod Dev 74:674–679

    PubMed  CAS  Google Scholar 

  • Zeng W, Baumann C, Schmidtmann A, Honaramooz A, Tang L, Bondareva A, Dores C, Fan T, Xi S, Geiman T, Rathi R, de Rooij D, De La Fuente R, Muegge K, Dobrinski I (2011) Lymphoid-specific helicase (HELLS) is essential for meiotic progression in mouse spermatocytes. Biol Reprod 84:1235–1241

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ina Dobrinski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dores, C., Alpaugh, W. & Dobrinski, I. From in vitro culture to in vivo models to study testis development and spermatogenesis. Cell Tissue Res 349, 691–702 (2012). https://doi.org/10.1007/s00441-012-1457-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1457-x

Keywords

Navigation