Skip to main content

Advertisement

Log in

The study and manipulation of spermatogonial stem cells using animal models

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Spermatogonial stem cells (SSCs) are a rare group of cells in the testis that undergo self-renewal and complex sequences of differentiation to initiate and sustain spermatogenesis, to ensure the continuity of sperm production throughout adulthood. The difficulty of unequivocal identification of SSCs and complexity of replicating their differentiation properties in vitro have prompted the introduction of novel in vivo models such as germ cell transplantation (GCT), testis tissue xenografting (TTX), and testis cell aggregate implantation (TCAI). Owing to these unique animal models, our ability to study and manipulate SSCs has dramatically increased, which complements the availability of other advanced assisted reproductive technologies and various genome editing tools. These animal models can advance our knowledge of SSCs, testis tissue morphogenesis and development, germ-somatic cell interactions, and mechanisms that control spermatogenesis. Equally important, these animal models can have a wide range of experimental and potential clinical applications in fertility preservation of prepubertal cancer patients, and genetic conservation of endangered species. Moreover, these models allow experimentations that are otherwise difficult or impossible to be performed directly in the target species. Examples include proof-of-principle manipulation of germ cells for correction of genetic disorders or investigation of potential toxicants or new drugs on human testis formation or function. The primary focus of this review is to highlight the importance, methodology, current and potential future applications, as well as limitations of using these novel animal models in the study and manipulation of male germline stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbasi S, Honaramooz A (2010a) Effects of recipient mouse strain, sex and gonadal status on the outcome of testis tissue xenografting. Reprod Fertil Dev 22:1279–1286

    PubMed  Google Scholar 

  • Abbasi S, Honaramooz A (2010b) The number of grafted fragments affects the outcome of testis tissue xenografting from piglets into recipient mice. Vet Med Int 2011:20–23. https://doi.org/10.4061/2011/686570

    Article  Google Scholar 

  • Abbasi S, Honaramooz A (2011) Xenografting of testis tissue from bison calf donors into recipient mice as a strategy for salvaging genetic material. Theriogenology 76:607–614

    PubMed  Google Scholar 

  • Abbasi S, Honaramooz A (2012) Feasibility of salvaging genetic potential of post-mortem fawns: production of sperm in testis tissue xenografts from immature donor white-tailed deer (Odocoileus virginianus) in recipient mice. Anim Reprod Sci 135:47–52

    PubMed  Google Scholar 

  • Abrishami M, Abbasi S, Honaramooz A (2010a) The effect of donor age on progression of spermatogenesis in canine testicular tissue after xenografting into immunodeficient mice. Theriogenology 73:512–522

    CAS  PubMed  Google Scholar 

  • Abrishami M, Anzar M, Yang Y, Honaramooz A (2010b) Cryopreservation of immature porcine testis tissue to maintain its developmental potential after xenografting into recipient mice. Theriogenology 73:86–96

    CAS  PubMed  Google Scholar 

  • Aeckerle N, Dressel R, Behr R (2013) Grafting of neonatal marmoset monkey testicular single-cell suspensions into immunodeficient mice leads to ex situ testicular cord neomorphogenesis. Cells Tissues Organs 198:209–220

    PubMed  Google Scholar 

  • Agarwal A, Mulgund A, Hamada A, Chyatte MR (2015) A unique view on male infertility around the globe. Reprod Biol Endocrinol 13:37

    PubMed  PubMed Central  Google Scholar 

  • Arregui L, Rathi R, Megee SO, Honaramooz A, Gomendio M, Roldan ERS, Dobrinski I (2008a) Xenografting of sheep testis tissue and isolated cells as a model for preservation of genetic material from endangered ungulates. Reproduction 136:85–93

    CAS  PubMed  Google Scholar 

  • Arregui L, Rathi R, Zeng W, Honaramooz A, Gomendio M, Roldan ERS, Dobrinski I (2008b) Xenografting of adult mammalian testis tissue. Anim Reprod Sci 106:65–76

    PubMed  Google Scholar 

  • Arregui L, Dobrinski I, Roldan ERS (2013) Germ cell survival and differentiation after xenotransplantation of testis tissue from three endangered species: Iberian lynx (Lynx pardinus), Cuvier’s gazelle (Gazella cuvieri) and Mohor gazelle (G. dama mhorr). Reprod Fertil Dev 26:817–826

    Google Scholar 

  • Awang-Junaidi AH, Singh J, Honaramooz A (2020) Regeneration of testis tissue after ectopic implantation of porcine testis cell aggregates in mice: improved consistency of outcomes and in situ monitoring. Reprod Fertil Dev in press. https://doi.org/10.1071/RD19043

  • Brinster RL, Avarbock MR (1994) Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci 91:11303–11307

    CAS  PubMed  Google Scholar 

  • Brinster RL, Zimmermann JW (1994) Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci 91:11298–11302

    CAS  PubMed  Google Scholar 

  • Campos-Junior PHA, Costa GMJ, Avelar GF, Lacerda SMSN, da Costa NN, Ohashi OM, MDS M, Barcelos LS, Jorge ÉC, Guimarães DA, de França LR (2014) Derivation of sperm from xenografted testis cells and tissues of the peccary (Tayassu tajacu). Reproduction 147:291–299

    PubMed  Google Scholar 

  • Chapman KM, Medrano GA, Jaichander P, Chaudhary J, Waits AE, Nobrega MA, Hotaling JM, Ober C, Hamra FK (2015) Targeted germline modifications in rats using crispr/cas9 and spermatogonial stem cells. Cell Rep 10:1828–1835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SR, Liu YX (2015) Regulation of spermatogonial stem cell self-renewal and spermatocyte meiosis by Sertoli cell signaling. Reproduction 149:159–167

    Google Scholar 

  • Culty M (2009) Gonocytes, the forgotten cells of the germ cell lineage. Birth Defects Res C Embryo Today 87:1–26

    CAS  PubMed  Google Scholar 

  • Dobrinski I, Avarbock MR, Brinster RL (1999) Transplantation of germ cells from rabbits and dogs into mouse testes. Biol Reprod 61:1331–1339

    CAS  PubMed  Google Scholar 

  • Dobrinski I, Avarbock MR, Brinster RL (2000) Germ cell transplantation from large domestic animals into mouse testes. Mol Reprod Dev 57:270–279

    CAS  PubMed  Google Scholar 

  • Dores C, Dobrinski I (2014) De novo morphogenesis of testis tissue: an improved bioassay to investigate the role of VEGF165 during testis formation. Reproduction 148:109–117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dufour JM, Rajotte RV, Korbutt GS (2002) Development of an in vivo model to study testicular morphogenesis. J Androl 23:635–644

    PubMed  Google Scholar 

  • Elzawam AZ, Tibary A, Mclean D (2013) Establishment of spermatogenesis in alpaca testis tissue xenografted onto nude mice is age dependent. Biol Reprod 87:423

    Google Scholar 

  • Fayaz MA, Awang-Junaidi AH, Singh J, Honaramooz A (2020) Validation of ultrasound biomicroscopy for the assessment of xenogeneic testis tissue grafts and cell implants in recipient mice. Andrology In press. https://doi.org/10.1111/andr.12771

  • Fayomi AP, Orwig KE (2018) Spermatogonial stem cells and spermatogenesis in mice, monkeys and men. Stem Cell Res 29:207–214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Festing MFW, Philip O, Gaines Das R, Borja MC, Berdoy M (2015) Reducing the use of animals in research through better experimental design. In: The design of animal experiments. pp 14–112

  • Gassei K, Schlatt S, Ehmcke J (2006) De novo morphogenesis of seminiferous tubules from dissociated immature rat testicular cells in xenografts. J Androl 27:611–618

    PubMed  Google Scholar 

  • Goel S, Sugimoto M, Minami N, Yamada M, Kume S, Imai H (2007) Identification, isolation, and in vitro culture of porcine gonocytes. Biol Reprod 77:127–137

    CAS  PubMed  Google Scholar 

  • Gonzalez R, Dobrinski I (2015) Beyond the mouse monopoly: studying the male germ line in domestic animal models. ILAR J 56:83–98

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goossens E, Frederickx V, De Block G, Van Steirteghem AC, Tournaye H (2003) Reproductive capacity of sperm obtained after germ cell transplantation in a mouse model. Hum Reprod 18:1874–1880

    CAS  PubMed  Google Scholar 

  • Goossens E, Geens M, De Block G, Tournaye H (2008) Spermatogonial survival in long-term human prepubertal xenografts. Fertil Steril 90:2019–2022

    PubMed  Google Scholar 

  • Gourdon JC, Travis AJ (2011) Spermatogenesis in ferret testis xenografts: a new model. Comp Med 61:145–149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griswold MD (2016) Spermatogenesis: The Commitment to Meiosis. Physiol Rev 96(1):1–17

  • Gromoll J, Wistuba J, Terwort N, Godmann M, Muller T, Simoni M (2003) A new subclass of the luteinizing hormone/chorionic gonadotropin receptor lacking exon 10 messenger RNA in the New World monkey (Platyrrhini) lineage. Biol Reprod 69:75–80

    CAS  PubMed  Google Scholar 

  • Gunn RM, Seddon H (1930) Testicular grafts on rams. Aust Vet J 6:132–145

    Google Scholar 

  • Hafez E (2000) Anatomy of male reproduction. Reprod Farm Anim. https://doi.org/10.1002/9781119265306.ch1

  • Hammer RE, Pursel VG, Rexroad CEJ, Wall RJ, Bolt DJ, Ebert KM, Palmiter RD, Brinster RL (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315:680–683

    CAS  PubMed  Google Scholar 

  • Hamra FK, Gatlin J, Chapman KM, Grellhesl DM, Garcia JV, Hammer RE, Garbers DL (2002) Production of transgenic rats by lentiviral transduction of male germ-line stem cells. Proc Natl Acad Sci 99:14931–14936

    CAS  PubMed  Google Scholar 

  • Heger NE, Hall SJ, Sandrof MA, McDonnell EV, Hensley JB, McDowell EN, Martin KA, Gaido KW, Johnson KJ, Boekelheide K (2012) Human fetal testis xenografts are resistant to phthalate-induced endocrine disruption. Environ Health Perspect 120:1137–1143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hermann BP, Sukhwani M, Lin C-C, Sheng Y, Tomko J, Rodriguez M, Shuttleworth JJ, McFarland D, Hobbs RM, Pandolfi PP, Schatten GP, Orwig KE (2007) Characterization, cryopreservation, and ablation of spermatogonial stem cells in adult rhesus macaques. Stem Cells 25:2330–2338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hermann BP, Sukhwani M, Winkler F, Pascarella JN, Peters KA, Sheng Y, Valli H, Rodriguez M, Ezzelarab M, Dargo G, Peterson K, Masterson K, Ramsey C, Ward T, Lienesch M, Volk A, Cooper DK, Thomson AW, Kiss JE, Penedo MC, Schatten GP, Mitalipov S, Orwig KE (2012) Spermatogonial stem cell transplantation into rhesus testes regenerates spermatogenesis producing functional sperm. Cell Stem Cell 11:715–726

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herrid M, Olejnik J, Jackson M, Suchowerska N, Stockwell S, Davey R, Hutton K, Hope S, Hill JR (2009) Irradiation enhances the efficiency of testicular germ cell transplantation in sheep. Biol Reprod 81:898–905

    CAS  PubMed  Google Scholar 

  • Hill J, Brownlee A, Davey R, Herrid M, Hutton K, Vignarajan S, Dobrinski I (2005) Initial results from male germ cell transfer between cattle breeds. Reprod Fertil Dev 17:204

    Google Scholar 

  • Honaramooz A (2012) Cryopreservation of testicular tissue. In: Katkov I (ed). Current Frontiers in Cryobiology, pp 209–228

  • Honaramooz A (2014) Potential and challenges of testis tissue xenografting from diverse ruminant species. In: Juengel JL, Miyamoto A, Price C, Reynolds LP, Smith MP and Webb R (eds) Reproduction in Domestic Ruminants VII. pp. 257–275

  • Honaramooz A, Yang Y (2010) Recent advances in application of male germ cell transplantation in farm animals. Vet Med Int 2011:1–9

    Google Scholar 

  • Honaramooz A, Megee SO, Dobrinski I (2002a) Germ cell transplantation in pigs. Biol Reprod 66:21–28

    CAS  PubMed  Google Scholar 

  • Honaramooz A, Snedaker A, Boiani M, Scholer H, Dobrinski I, Schlatt S (2002b) Sperm from neonatal mammalian testes grafted in mice. Nature 418:778–781

    CAS  PubMed  Google Scholar 

  • Honaramooz A, Behboodi E, Blash S, Megee SO, Dobrinski I (2003a) Germ cell transplantation in goats. Mol Reprod Dev 64:422–428

    CAS  PubMed  Google Scholar 

  • Honaramooz A, Behboodi E, Megee SO, Overton SA, Galantino-Homer H, Echelard Y, Dobrinski I (2003b) Fertility and germline transmission of donor haplotype following germ cell transplantation in immunocompetent goats. Biol Reprod 69:1260–1264

    CAS  PubMed  Google Scholar 

  • Honaramooz A, Li M-W, Penedo MCT, Meyers S, Dobrinski I (2004) Accelerated maturation of primate testis by xenografting into mice. Biol Reprod 70:1500–1503

    CAS  PubMed  Google Scholar 

  • Honaramooz A, Zeng W, Rathi R, Koster J, Ryder O, Dobrinski I (2005) Testis tissue xenografting to preserve germ cells from a cloned banteng calf. Reprod Fertil Dev 17:247

    Google Scholar 

  • Honaramooz A, Megee SO, Rathi R, Dobrinski I (2007) Building a testis: formation of functional testis tissue after transplantation of isolated porcine (Sus scrofa) testis cells. Biol Reprod 76:43–47

    CAS  PubMed  Google Scholar 

  • Honaramooz A, Megee S, Zeng W, Destrempes MM, Overton SA, Luo J, Galantino-Homer H, Modelski M, Chen F, Blash S, Melican DT, Gavin WG, Ayres S, Yang F, Wang PJ, Echelard Y, Dobrinski I (2008) Adeno-associated virus (AAV)-mediated transduction of male germ line stem cells results in transgene transmission after germ cell transplantation. FASEB J 22:374–382

    CAS  PubMed  Google Scholar 

  • Honaramooz A, Schlatt S, Orwig K, Kim NH (2011) Recent advances in reproductive technologies. Vet Med Int 2011:915031. https://doi.org/10.4061/2011/915031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Sartini BL, Parks JE (2008) Spermatogenesis in testis xenografts grafted from pre-pubertal Holstein bulls is re-established by stem cell or early spermatogonia. Anim Reprod Sci 103:1–12

    PubMed  Google Scholar 

  • Hughes IA (2008) Disorders of sex development: a new definition and classification. Best Pract Res Clin Endocrinol Metab 22:119–134

    PubMed  Google Scholar 

  • Huppertz N, Tolba R, Grosse J (2015) Micturition in Göttingen minipigs: first reference in vivo data for urological research and review of literature. Lab Anim 49:336–344

    CAS  PubMed  Google Scholar 

  • Ibtisham F, Honaramooz A (2020) Spermatogonial stem cells for in vitro spermatogenesis and in vivo restoration of fertility. Cells 9:745

    PubMed Central  Google Scholar 

  • Ibtisham F, Yanfeng N, Wang Z, Wu J, Xiao M, An L (2016) Animal cloning drawbacks an-overview. J Dairy Vet Anim Res 3:1–5

    Google Scholar 

  • Ibtisham F, Qadir MMF, Xiao M, An L (2017a) Animal cloning applications and issues. Ruusian J Genet 53:965–971

    CAS  Google Scholar 

  • Ibtisham F, Wu J, Xiao M, An L, Banker Z, Nawab A, Zhao Y, Li G (2017b) Progress and future prospect of in vitro spermatogenesis. Oncotarget 8:66709–66727

    PubMed  PubMed Central  Google Scholar 

  • Ibtisham F, Zhao Y, Wu J, Nawab A, Mei X, Li G, Lilong A (2019) The optimized condition for the isolation and in vitro propagation of mouse spermatogonial stem cells. Biol Futur 70:79–87

    CAS  Google Scholar 

  • Iwase R, Kasai K, Tada N (1994) Direct injection of foreign DNA into mouse testis as a possible alternative of sperm-mediated gene transfer. Anim Biotechnol 5:19–31

    Google Scholar 

  • Izadyar F, Den Ouden K, Creemers LB, Posthuma G, Parvinen M, de Rooij DG (2003a) Proliferation and differentiation of bovine type A spermatogonia during long-term culture. Biol Reprod 68:272–281

    CAS  PubMed  Google Scholar 

  • Izadyar F, Den Ouden K, Stout TAE, Stout J, Coret J, Lankveld DPK, Spoormakers TJP, Colenbrander B, Oldenbroek JK, Van der Ploeg KD, Woelders H, Kal HB, De Rooij DG (2003b) Autologous and homologous transplantation of bovine spermatogonial stem cells. Reproduction 126:765–774

    CAS  PubMed  Google Scholar 

  • Joerg H, Janett F, Schlatt S, Mueller S, Graphodatskaya D, Suwattana D, Asai M, Stranzinger G (2003) Germ cell transplantation in an azoospermic klinefelter bull. Biol Reprod 69:1940–1944

    CAS  PubMed  Google Scholar 

  • Kalds P, Zhou S, Cai B, Liu J, Wang Y, Petersen B, Sonstegard T, Wang X, Chen Y (2019) Sheep and goat genome engineering: from random transgenesis to the CRISPR era. Front Genet 10:750

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur G, Vadala S, Dufour JM (2017) An overview of a Sertoli cell transplantation model to study testis morphogenesis and the role of the Sertoli cells in immune privilege. Environ Epigenetics 3:dvx012

    Google Scholar 

  • Kim Y, Selvaraj V, Dobrinski I, Lee H, McEntee MC, Travis AJ (2006) Recipient preparation and mixed germ cell isolation for spermatogonial stem cell transplantation in domestic cats. J Androl 27:248–256

    PubMed  Google Scholar 

  • Kim Y, Turner D, Nelson J, Dobrinski I, McEntee M, Travis AJ (2008) Production of donor-derived sperm after spermatogonial stem cell transplantation in the dog. Reproduction 136:823–831

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kita K, Watanabe T, Ohsaka K, Hayashi H, Kubota Y, Nagashima Y, Aoki I, Taniguchi H, Noce T, Inoue K, Miki H, Ogonuki N, Tanaka H, Ogura A, Ogawa T (2007) Production of functional spermatids from mouse germline stem cells in ectopically reconstituted seminiferous tubules. Biol Reprod 76:211–217

    CAS  PubMed  Google Scholar 

  • Kubota H, Brinster RL (2018) Spermatogonial stem cells. Biol Reprod 99:52–74

    PubMed  PubMed Central  Google Scholar 

  • Langenstroth D, Kossack N, Westernstroer B, Wistuba J, Behr R, Gromoll J, Schlatt S (2014) Separation of somatic and germ cells is required to establish primate spermatogonial cultures. Hum Reprod 29:2018–2031

    PubMed  Google Scholar 

  • Lehmann R (2012) Germline stem cells: origin and destiny. Cell Stem Cell 10:729–739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levine H, Jorgensen N, Martino-Andrade A, Mendiola J, Weksler-Derri D, Mindlis I, Pinotti R, Swan SH (2017) Temporal trends in sperm count: a systematic review and meta-regression analysis. Hum Reprod Update 23:646–659

    PubMed  PubMed Central  Google Scholar 

  • McLaren A (2003) Primordial germ cells in the mouse. Dev Biol 262:1–15

    CAS  PubMed  Google Scholar 

  • Menchaca A, Anegon I, Whitelaw CBA, Baldassarre H, Crispo M (2016) New insights and current tools for genetically engineered (GE) sheep and goats. Theriogenology 86:160–169

    CAS  PubMed  Google Scholar 

  • Mikkola M, Sironen A, Kopp C, Taponen J, Sukura A, Vilkki J, Katila T, Andersson M (2006) Transplantation of normal boar testicular cells resulted in complete focal spermatogenesis in a boar affected by the immotile short-tail sperm defect. Reprod Domest Anim 41:124–128

    CAS  PubMed  Google Scholar 

  • Mitchell RT, Saunders PTK, Childs AJ, Cassidy-Kojima C, Anderson RA, Wallace WHB, Kelnar CJH, Sharpe RM (2010) Xenografting of human fetal testis tissue: a new approach to study fetal testis development and germ cell differentiation. Hum Reprod 25:2405–2414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell RT, Childs AJ, Anderson RA, van den Driesche S, Saunders PTK, McKinnell C, Wallace WHB, Kelnar CJH, Sharpe RM (2012) Do phthalates affect steroidogenesis by the human fetal testis? Exposure of human fetal testis xenografts to di-n-butyl phthalate. J Clin Endocrinol Metab 97:E341–E348

    CAS  PubMed  Google Scholar 

  • Mitchell RT, Sharpe RM, Anderson RA, McKinnell C, Macpherson S, Smith LB, Wallace WHB, Kelnar CJH, van den Driesche S (2013) Diethylstilboestrol exposure does not reduce testosterone production in human fetal testis xenografts. PLoS One 8:e61726

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagano M, McCarrey JR, Brinster RL (2001) Primate spermatogonial stem cells colonize mouse testes. Biol Reprod 64:1409–1416

    CAS  PubMed  Google Scholar 

  • Nagano M, Patrizio P, Brinster RL (2002) Long-term survival of human spermatogonial stem cells in mouse testes. Fertil Steril 78:1225–1233

    PubMed  Google Scholar 

  • Niemann H, Kues WA (2003) Application of transgenesis in livestock for agriculture and biomedicine. Anim Reprod Sci 79:291–317

    CAS  PubMed  Google Scholar 

  • Nordkap L, Joensen UN, Blomberg Jensen M, Jorgensen N (2012) Regional differences and temporal trends in male reproductive health disorders: semen quality may be a sensitive marker of environmental exposures. Mol Cell Endocrinol 355:221–230

    CAS  PubMed  Google Scholar 

  • Ntemou E, Kadam P, Van Saen D, Wistuba J, Mitchell RT, Schlatt S, Goossens E (2019) Complete spermatogenesis in intratesticular testis tissue xenotransplants from immature non-human primate. Hum Reprod 34:403–413

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oatley JM, Reeves JJ, McLean DJ (2005) Establishment of spermatogenesis in neonatal bovine testicular tissue following ectopic xenografting varies with donor age. Biol Reprod 72:358–364

    CAS  PubMed  Google Scholar 

  • Oduwole OO, Peltoketo H, Huhtaniemi IT (2018) Role of follicle-stimulating hormone in spermatogenesis. Front Endocrinol (Lausanne) 9:763

    Google Scholar 

  • Ogawa T, Dobrinski I, Avarbock MR, Brinster RL (1999a) Xenogeneic spermatogenesis following transplantation of hamster germ cells to mouse testes. Biol Reprod 60:515–521

    CAS  PubMed  Google Scholar 

  • Ogawa T, Dobrinski I, Brinster RL (1999b) Recipient preparation is critical for spermatogonial transplantation in the rat. Tissue Cell 31:461–472

    CAS  PubMed  Google Scholar 

  • Orwig KE, Avarbock MR, Brinster RL (2002) Retrovirus-mediated modification of male germline stem cells in rats. Biol Reprod 67:874–879

    CAS  PubMed  Google Scholar 

  • Perlman RL (2016) Mouse models of human disease: an evolutionary perspective. Evol Med Public Health 2016:170–176

    PubMed  PubMed Central  Google Scholar 

  • Phillips BT, Gassei K, Orwig KE (2010) Spermatogonial stem cell regulation and spermatogenesis. Philos Trans R Soc B Biol Sci 365:1663–1678

    CAS  Google Scholar 

  • Polejaeva IA, Rutigliano HM, Wells KD (2016) Livestock in biomedical research: history, current status and future prospective. Reprod Fertil Dev 28:112–124

    PubMed  Google Scholar 

  • Povlsen CO, Skakkebaek NE, Rygaard J, Jensen G (1974) Heterotransplantation of human foetal organs to the mouse mutant nude. Nature 248:247–249

    CAS  PubMed  Google Scholar 

  • Rathi R, Honaramooz A, Zeng W, Turner R, Dobrinski I (2006) Germ cell development in equine testis tissue xenografted into mice. Reproduction 131:1091–1098

    CAS  PubMed  Google Scholar 

  • Reddy N, Mahla RS, Thathi R, Suman SK, Jose J, Goel S (2012) Gonadal status of male recipient mice influences germ cell development in immature buffalo testis tissue xenograft. Reproduction 143:59–69

    CAS  PubMed  Google Scholar 

  • Rodriguez-Sosa J, Silvertown J, Foster R, Medin J, Hahnel A (2009) Transduction and transplantation of spermatogonia into the testis of ram lambs through the extra-testicular rete. Reprod Domest Anim 44:612–620

    CAS  PubMed  Google Scholar 

  • Rodriguez-Sosa JR, Bondareva A, Tang L, Avelar GF, Coyle KM, Modelski M, Alpaugh W, Conley A, Wynne-Edwards K, França LR, Meyers S, Dobrinski I (2014) Phthalate esters affect maturation and function of primate testis tissue ectopically grafted in mice. Mol Cell Endocrinol 398:89–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sato Y, Nozawa S, Yoshiike M, Arai M, Sasaki C, Iwamoto T (2010) Xenografting of testicular tissue from an infant human donor results in accelerated testicular maturation. Hum Reprod 25:1113–1122

    CAS  PubMed  Google Scholar 

  • Sato T, Yokonishi T, Komeya M, Katagiri K, Kubota Y, Matoba S, Ogonuki N, Ogura A, Yoshida S, Ogawa T (2012) Testis tissue explantation cures spermatogenic failure in c-Kit ligand mutant mice. Proc Natl Acad Sci 109:16934–16938

    CAS  PubMed  Google Scholar 

  • Savvulidi F, Ptacek M, Savvulidi Vargova K, Stadnik L (2019) Manipulation of spermatogonial stem cells in livestock species. J Anim Sci Biotechnol 10:46. https://doi.org/10.1186/s40104-019-0355-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Schlatt S, Kim SS, Gosden R (2002) Spermatogenesis and steroidogenesis in mouse, hamster and monkey testicular tissue after cryopreservation and heterotopic grafting to castrated hosts. Reproduction 124:339–346

    CAS  PubMed  Google Scholar 

  • Schlatt S, Honaramooz A, Boiani M, Scholer HR, Dobrinski I (2003) Progeny from sperm obtained after ectopic grafting of neonatal mouse testes. Biol Reprod 68:2331–2335

    CAS  PubMed  Google Scholar 

  • Schlatt S, Honaramooz A, Ehmcke J, Goebell PJ, Rübben H, Dhir R, Dobrinski I, Patrizio P (2006) Limited survival of adult human testicular tissue as ectopic xenograft. Hum Reprod 21:384–389

    CAS  PubMed  Google Scholar 

  • Schlatt S, Westernströer B, Gassei K, Ehmcke J (2010) Donor-host involvement in immature rat testis xenografting into nude mouse hosts. Biol Reprod 82:888–895

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schrader M, Heicappell R, Müller M, Straub B, Miller K (2001) Impact of chemotherapy on male fertility. Oncol Res Treat 24:326–330

    CAS  Google Scholar 

  • Senger PL (2012) Pathways to pregnancy & parturition. 3rd edn. Current Conceptions

  • Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, Richards DR, McDonald-Smith GP, Gao H, Hennessy L, Finnerty CC, López CM, Honari S, Moore EE, Minei JP, Cuschieri J, Bankey PE, Johnson JL, Sperry J, Nathens AB, Billiar TR, West MA, Jeschke MG, Klein MB, Gamelli RL, Gibran NS, Brownstein BH, Miller-Graziano C, Calvano SE, Mason PH, Cobb JP, Rahme LG, Lowry SF, Maier RV, Moldawer LL, Herndon DN, Davis RW, Xiao W, Tompkins RG (2013) Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci 110:3507–3512

    CAS  PubMed  Google Scholar 

  • Setchell BP (1990) The testis and tissue transplantation: historical aspects. J Reprod Immunol 18:1–8

    CAS  PubMed  Google Scholar 

  • Shinohara T, Kato M, Takehashi M, Lee J, Chuma S, Nakatsuji N, Kanatsu-Shinohara M, Hirabayashi M (2006) Rats produced by interspecies spermatogonial transplantation in mice and in vitro microinsemination. Proc Natl Acad Sci 103:13624–13628

    CAS  PubMed  Google Scholar 

  • Skakkebaek NE, Jensen G, Povlsen CO, Rygaard J (1974) Heterotransplantation of human foetal testicular and ovarian tissue to the mouse mutant nude. A preliminary study. Acta Obstet Gynecol Scand Suppl 29:73–75

    CAS  PubMed  Google Scholar 

  • Skakkebaek NE, Rajpert-De Meyts E, Main KM (2001) Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod 16:972–978

    CAS  PubMed  Google Scholar 

  • Snedaker AK, Honaramooz A, Dobrinski I (2004) A game of cat and mouse: xenografting of testis tissue from domestic kittens results in complete cat spermatogenesis in a mouse host. J Androl 25:926–930

    PubMed  Google Scholar 

  • Stockwell S, Herrid M, Davey R, Brownlee A, Hutton K, Hill JR (2009) Microsatellite detection of donor-derived sperm DNA following germ cell transplantation in cattle. Reprod Fertil Dev 21:462–468

    CAS  PubMed  Google Scholar 

  • Strange DP, Zarandi NP, Trivedi G, Atala A, Bishop CE, Sadri-Ardekani H, Verma S (2018) Human testicular organoid system as a novel tool to study Zika virus pathogenesis. Emerg Microbes Infect 7:1–7

    Google Scholar 

  • Svingen T, Koopman P (2013) Building the mammalian testis: origins, differentiation, and assembly of the component cell populations. Genes Dev 27:2409–2426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takashima S, Shinohara T (2018) Culture and transplantation of spermatogonial stem cells. Stem Cell Res 29:46–55. https://doi.org/10.1016/j.scr.2018.03.006

    Article  PubMed  Google Scholar 

  • Van Saen D, Goossens E, Bourgain C, Ferster A, Tournaye H (2011) Meiotic activity in orthotopic xenografts derived from human postpubertal testicular tissue. Hum Reprod 26:282–293

    PubMed  Google Scholar 

  • Van Saen D, Goossens E, Haentjens P, Baert Y, Tournaye H (2013) Exogenous administration of recombinant human FSH does not improve germ cell survival in human prepubertal xenografts. Reprod Biomed 26:286–298

    Google Scholar 

  • Watanabe T, Hayashi H, Kita K, Kubota Y, Ogawa T (2009) Ectopic porcine spermatogenesis in murine subcutis: tissue grafting versus cell-injection methods. Asian J Androl 11:317–323

    PubMed  PubMed Central  Google Scholar 

  • Wistuba J, Mundry M, Luetjens CM, Schlatt S (2004) Cografting of hamster (Phodopus sungorus) and marmoset (Callithrix jacchus) testicular tissues into nude mice does not overcome blockade of early spermatogenic differentiation in primate grafts. Biol Reprod 71:2087–2091

    CAS  PubMed  Google Scholar 

  • Wu X, Schmidt JA, Avarbock MR, Tobias JW, Carlson CA, Kolon TF, Ginsberg JP, Brinster RL (2009) Prepubertal human spermatogonia and mouse gonocytes share conserved gene expression of germline stem cell regulatory molecules. Proc Natl Acad Sci 106:21672–21677

    CAS  PubMed  Google Scholar 

  • Wyns C, Van Langendonckt A, Wese F-X, Donnez J, Curaba M (2008) Long-term spermatogonial survival in cryopreserved and xenografted immature human testicular tissue. Hum Reprod 23:2402–2414

    PubMed  Google Scholar 

  • Wyns C, Curaba M, Petit S, Vanabelle B, Laurent P, Wese J-FX, Donnez J (2011) Management of fertility preservation in prepubertal patients: 5 years’ experience at the Catholic University of Louvain. Hum Reprod 26:737–747

    CAS  PubMed  Google Scholar 

  • Yang Y, Honaramooz A (2011) Efficient purification of neonatal porcine gonocytes with Nycodenz and differential plating. Reprod Fertil Dev 23:496–505

    CAS  PubMed  Google Scholar 

  • Yang Y, Steeg J, Honaramooz A (2010a) The effects of tissue sample size and media on short-term hypothermic preservation of porcine testis tissue. Cell Tissue Res 340:397–406

    PubMed  Google Scholar 

  • Yang Y, Yarahmadi M, Honaramooz A (2010b) Development of novel strategies for the isolation of piglet testis cells with a high proportion of gonocytes. Reprod Fertil Dev 22:1057–1065

    CAS  PubMed  Google Scholar 

  • Yu J, Cai ZM, Wan HJ, Zhang FT, Ye J, Fang JZ, Gui YT, Ye JX (2006) Development of neonatal mouse and fetal human testicular tissue as ectopic grafts in immunodeficient mice. Asian J Androl 8:393–403

    CAS  PubMed  Google Scholar 

  • Zeng W, Avelar GF, Rathi R, Franca LR, Dobrinski I (2006) The length of the spermatogenic cycle is conserved in porcine and ovine testis xenografts. J Androl 27:527–533

    PubMed  Google Scholar 

  • Zeng W, Snedaker AK, Megee S, Rathi R, Chen F, Honaramooz A, Dobrinski I (2009) Preservation and transplantation of porcine testis tissue. Reprod Fertil Dev 21:489–497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng W, Baumann C, Schmidtmann A, Honaramooz A, Tang L, Bondareva A, Dores C, Fan T, Xi S, Geiman T, Rathi R, de Rooij D, De La Fuente R, Muegge K, Dobrinski I (2011) Lymphoid-specific helicase (HELLS) is essential for meiotic progression in mouse spermatocytes. Biol Reprod 84:1235–1241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng W, Tang L, Bondareva A, Luo J, Megee SO, Modelski M, Blash S, Melican DT, Destrempes MM, Overton SA, Gavin WG, Ayres S, Echelard Y, Dobrinski I (2012) Non-viral transfection of goat germline stem cells by nucleofection results in production of transgenic sperm after germ cell transplantation. Mol Reprod Dev 79:255–261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng W, Tang L, Bondareva A, Honaramooz A, Tanco V, Dores C, Megee S, Modelski M, Rodriguez-Sosa JR, Paczkowski M, Silva E, Wheeler M, Krisher RL, Dobrinski I (2013) Viral transduction of male germline stem cells results in transgene transmission after germ cell transplantation in pigs. Biol Reprod 88:27

    PubMed  Google Scholar 

  • Zeng W, Alpaugh W, Stefanovski D, Schlingmann K, Dobrinski I, Turner RM (2017) Xenografting of isolated equine (Equus caballus) testis cells results in de novo morphogenesis of seminiferous tubules but not spermatogenesis. Andrology 5:336–346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Hill J, Holland M, Kurihara Y, Loveland KL (2008) Bovine sertoli cells colonize and form tubules in murine hosts following transplantation and grafting procedures. J Androl 29:418–430

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank the current and former trainees in the lab for their contribution to the published work presented here. We also thank the animal care personnel at the Prairie Swine Centre, the Animal Care Unit of the Western College of Veterinary Medicine, and the Laboratory Animal Services Unit of the College of Medicine.

Funding

This study was supported by grants to A. Honaramooz from the Natural Sciences and Engineering Research Council (NSERC) of Canada, and the Saskatchewan Health Research Foundation (SHRF). Scholarships were provided to F. Ibtisham and A.H. Awang-Junaidi by the University of Saskatchewan’s Colleges of Graduate and Postdoctoral Studies, and Western College of Veterinary Medicine. Financial support was also provided to A. H. Awang-Junaidi by the Malaysian Ministry of Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Honaramooz.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

Experimental procedures involving animals conducted by our group were reviewed and approved by the University of Saskatchewan’s Institutional Animal Care and Use Committee.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibtisham, F., Awang-Junaidi, A.H. & Honaramooz, A. The study and manipulation of spermatogonial stem cells using animal models. Cell Tissue Res 380, 393–414 (2020). https://doi.org/10.1007/s00441-020-03212-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-020-03212-x

Keywords

Navigation