Skip to main content
Log in

Visual photoreceptor subtypes in the chicken retina: melatonin-synthesizing activity and in vitro differentiation

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The chicken retina contains five visual photoreceptor subtypes, based on the specific opsin gene they express. In addition to the central role they play in vision, some or all of these photoreceptors translate photoperiodic information into a day–night rhythm of melatonin production. This indolic hormone plays an important role in the photoperiodic regulation of retinal physiology. Previous studies have stopped short of establishing whether melatonin synthesis takes place in all the photoreceptor spectral subtypes. Another issue that has been left unsettled by previous studies is when during development are retinal precursor cells committed to a specific photoreceptor subtype and to a melatoninergic phenotype? To address the first question, in situ hybridization of the five opsins was combined with immunofluorescent detection of the melatonin-synthesizing enzyme hydroxyindole O-methyltransferase (HIOMT, EC.2.1.1.4). Confocal microscopy clearly indicated that all photoreceptor spectral subtypes are involved in melatonin synthesis. To tackle the second question, retinal precursor cells were dissociated between embryonic day 6 (E6) and E13 and cultured in serum-free medium for 4 days to examine their ability to autonomously activate the expression of opsins and HIOMT. Real-time PCR on cultured precursors indicated that red-, green- and violet-sensitive cones are committed at E6, rods at E10 and blue-sensitive cones at E12. HIOMT gene expression was programmed at E6, probably reflecting the differentiation of early cones. The present study provides a better characterization of photoreceptor subtypes in the chicken retina and describes a combination of serum-free culture and real-time PCR that should facilitate further developmental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adler R (1990) Preparation, enrichment and growth of purified cultures of neurons and photoreceptors from chick embryos and from normal and mutant mice. In: Conn PM (ed) Methods in neuroscience, vol 2. Academic, San Diego, pp 134–150

    Google Scholar 

  • Adler R, Tamres A, Bradford RL, Belecky-Adams TL (2001) Microenvironmental regulation of visual pigment expression in the chick retina. Dev Biol 236:454–464

    Article  PubMed  CAS  Google Scholar 

  • Belecky-Adams T, Cook B, Adler R (1996) Correlations between terminal mitosis and differentiated fate of retinal precursor cells in vivo and in vitro: analysis with the “window-labeling” technique. Dev Biol 178:304–315

    Article  PubMed  CAS  Google Scholar 

  • Bernard M, Voisin P (2008) Photoreceptor-specific expression, light-dependent localization, and transcriptional targets of the zinc-finger protein Yin Yang 1 in the chicken retina. J Neurochem 105:595–604

    Article  PubMed  CAS  Google Scholar 

  • Bernard M, Donohue SJ, Klein DC (1995) Human hydroxyindole-O-methyltransferase in pineal gland, retina and Y79 retinoblastoma cells. Brain Res 696:37–48

    Article  PubMed  CAS  Google Scholar 

  • Bernard M, Iuvone PM, Cassone VM, Roseboom PH, Coon SL, Klein DC (1997) Avian melatonin synthesis: photic and circadian regulation of serotonin N-acetyltransferase mRNA in the chicken pineal gland and retina. J Neurochem 68:213–224

    Article  PubMed  CAS  Google Scholar 

  • Besharse JC, Dunis DA (1983) Methoxyindoles and photoreceptor metabolism: activation of rod shedding. Science 219:1341–1343

    Article  PubMed  CAS  Google Scholar 

  • Bowmaker JK, Heath LA, Wilkie SE, Hunt DM (1997) Visual pigments and oil droplets from six classes of photoreceptor in the retinas of birds. Vision Res 37:2183–2194

    Article  PubMed  CAS  Google Scholar 

  • Bruhn SL, Cepko CL (1996) Development of the pattern of photoreceptors in the chick retina. J Neurosci 16:1430–1439

    PubMed  CAS  Google Scholar 

  • Cahill GM, Besharse JC (1993) Circadian clock functions localized in xenopus retinal photoreceptors. Neuron 10:573–577

    Article  PubMed  CAS  Google Scholar 

  • Cailleau V, Bernard M, Morin F, Guerlotté J, Voisin P (2005) Differential regulation of melatonin synthesis genes and phototransduction genes in embryonic chicken retina and cultured retinal precursors cells. Mol Vis 11:472–481

    PubMed  CAS  Google Scholar 

  • Chaurasia SS, Rollag MD, Jiang G, Hayes WP, Haque R, Natesan A, Zatz M, Tosini G, Liu C, Korf HW, Iuvone PM, Provencio I (2005) Molecular cloning, localization and circadian expression of chicken melanopsin (Opn4): differential regulation of expression in pineal and retinal cell types. J Neurochem 92:158–170

    Article  PubMed  CAS  Google Scholar 

  • Coon SL, Roseboom PH, Baler R, Weller JL, Namboodiri MA, Koonin EV, Klein DC (1995) Pineal serotonin N-acetyltransferase: expression cloning and molecular analysis. Science 270:1681–1683

    Article  PubMed  CAS  Google Scholar 

  • Coon SL, Mazuruk K, Bernard M, Roseboom PH, Klein DC, Rodriguez IR (1996) The human serotonin N-acetyltransferase (EC 2.3.1.87) gene (AANAT): structure, chromosomal localization, and tissue expression. Genomics 34:76–84

    Article  PubMed  CAS  Google Scholar 

  • Coon SL, Del Olmo E, Young WS 3rd, Klein DC (2002) Melatonin synthesis enzymes in Macaca mulatta: focus on arylalkylamine N-acetyltransferase (EC 2.3.1.87). J Clin Endocrinol Metab 87:4699–4706

    Article  PubMed  CAS  Google Scholar 

  • Dubocovich ML (1983) Melatonin is a potent modulator of dopamine release in the retina. Nature 306:782–784

    Article  PubMed  CAS  Google Scholar 

  • Ebrey T, Koutalos Y (2001) Vertebrate photoreceptors. Prog Retin Eye Res 20:49–94

    Article  PubMed  CAS  Google Scholar 

  • Fleming JV, Barrett P, Coon SL, Klein DC, Morgan PJ (1999) Ovine arylalkylamine N-acetyltransferase in the pineal and pituitary glands: differences in function and regulation. Endocrinology 140:972–978

    Article  PubMed  CAS  Google Scholar 

  • Garbarino-Pico E, Carpentieri AR, Contin MA, Sarmiento MI, Brocco MA, Panzetta P, Rosenstein RE, Caputto BL, Guido ME (2004) Retinal ganglion cells are autonomous circadian oscillators synthesizing N-acetylserotonin during the day. J Biol Chem 279:51172–51181

    Article  PubMed  CAS  Google Scholar 

  • Gauer F, Craft CM (1996) Circadian regulation of hydroxyindole-O-methyltransferase mRNA levels in rat pineal and retina. Brain Res 737:99–109

    Article  PubMed  CAS  Google Scholar 

  • Govardovskiĭ VI, Zueva LV (1977) Visual pigments of chicken and pigeon. Vision Res 17:537–543

    Article  PubMed  Google Scholar 

  • Guerlotté J, Voisin P, Brisson P, Faure JP, Collin JP (1988) Synthesis of melatonin by the pineal modified photoreceptors of birds. Immunocytochemical localization of hydroxyindole-O-methyltransferase. Bio Cell 64:93–96

    Article  Google Scholar 

  • Guerlotté J, Grève P, Bernard M, Gréchez-Cassiau A, Morin F, Collin JP, Voisin P (1996) Hydroxyindole-O-methyltransferase in the chicken retina: immunocytochemical localization and daily rhythm of mRNA. Eur J Neurosci 8:710–715

    Article  PubMed  Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92

    Article  Google Scholar 

  • Hart NS (2001) Variations in cone photoreceptor abundance and the visual ecology of birds. J Comp Physiol A 187:685–697

    Article  PubMed  CAS  Google Scholar 

  • Ishida I, Obinata M, Deguchi T (1987) Molecular cloning and nucleotide sequence of cDNA encoding hydroxyindole O-methyltransferase of bovine pineal glands. J Biol Chem 262:2895–2899

    PubMed  CAS  Google Scholar 

  • Iuvone PM (1990) Development of melatonin synthesis in chicken retina: regulation of serotonin N-acetyltransferase activity by light, circadian oscillators, and cyclic AMP. J Neurochem 54:1562–1568

    Article  PubMed  CAS  Google Scholar 

  • Iuvone PM, Gan J (1994) Melatonin receptor-mediated inhibition of cyclic AMP accumulation in chick retinal cell cultures. J Neurochem 63:118–124

    Article  PubMed  CAS  Google Scholar 

  • Iuvone PM, Tosini G, Pozdeyev N, Haque R, Klein DC, Chaurasia SS (2005) Circadian clocks, clock networks, arylalkylamine N-acetyltransferase, and melatonin in the retina. Prog Retin Eye Res 24:433–456

    Article  PubMed  CAS  Google Scholar 

  • Jacob V, Rothermel A, Wolf P, Layer PG (2005) Rhodopsin, violet and blue opsin expressions in the chick are highly dependent on tissue and serum conditions. Cells Tissues Organs 180:159–168

    Article  PubMed  CAS  Google Scholar 

  • Klein DC (2007) Arylalkylamine N-acetyltransferase: “the Timezyme”. J Biol Chem 282:4233–4237

    Article  PubMed  CAS  Google Scholar 

  • Kram YA, Mantey S, Corbo JC (2010) Avian cone photoreceptors tile the retina as five independent, self-organizing mosaics. PLoS One 5:e8992

    Article  PubMed  Google Scholar 

  • Kumbalasiri T, Provencio I (2005) Melanopsin and other novel mammalian opsins. Exp Eye Res 81:368–375

    Article  PubMed  CAS  Google Scholar 

  • Kuwano R, Iwanaga T, Nakajima T, Masuda T, Takahashi Y (1983) Immunocytochemical demonstration of hydroxyindole O-methyltransferase (HIOMT), neuron-specific enolase (NSE) and S-100 protein in the bovine pineal gland. Brain Res 274:171–175

    Article  PubMed  CAS  Google Scholar 

  • Lamb TD, Collin SP, Pugh EN (2007) Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup. Nat Rev Neurosci 8:960–976

    Article  PubMed  CAS  Google Scholar 

  • López-López R, López-Gallardo M, Pérez-Alvarez MJ, Prada C (2008) Isolation of chick retina cones and study of their diversity based on oil droplet colour and nucleus position. Cell Tissue Res 332:13–24

    Article  PubMed  Google Scholar 

  • Morris VB (1970) Symmetry in a receptor mosaic demonstrated in the chick from the frequencies, spacing and arrangement of the types of retinal receptors. J Comp Neurol 140:359–398

    Article  PubMed  CAS  Google Scholar 

  • Nowak JZ, Kazula A, Gołembiowska K (1992) Melatonin increases serotonin N-acetyltransferase activity and decreases dopamine synthesis in light-exposed chick retina: in vivo evidence supporting melatonin-dopamine interaction in retina. J Neurochem 59:1499–1505

    Article  PubMed  CAS  Google Scholar 

  • Okano T, Fukada Y, Artamonov ID, Yoshizawa T (1989) Purification of cone visual pigments from chicken retina. Biochemistry 28:8848–8856

    Article  PubMed  CAS  Google Scholar 

  • Okano T, Kojima D, Fukada Y, Shichida Y, Yoshizawa T (1992) Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments. Proc Natl Acad Sci USA 89:5932–5936

    Article  PubMed  CAS  Google Scholar 

  • Pierce ME, Besharse JC (1985) Circadian regulation of retinomotor movements. I. Interaction of melatonin and dopamine in the control of cone length. J Gen Physiol 86:671–689

    Article  PubMed  CAS  Google Scholar 

  • Raymond PA, Barthel LK (2004) A moving wave patterns the cone photoreceptor mosaic array in the zebrafish retina. Int J Dev Biol 48:935–945

    Article  PubMed  CAS  Google Scholar 

  • Simonneaux V, Ribelayga C (2003) Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol Rev 55:325–395

    Article  PubMed  CAS  Google Scholar 

  • Stenkamp DL, Iuvone PM, Adler R (1994) Photomechanical movements of cultured embryonic photoreceptors: regulation by exogenous neuromodulators and by a regulable source of endogenous dopamine. J Neurosci 14:3083–3096

    PubMed  CAS  Google Scholar 

  • Stenkamp DL, Hisatomi O, Barthel LK, Tokunaga F, Raymond PA (1996) Temporal expression of rod and cone opsins in embryonic goldfish retina predicts the spatial organization of the cone mosaic. Invest Ophthalmol Vis Sci 37:363–376

    PubMed  CAS  Google Scholar 

  • Tomonari S, Takagi A, Akamatsu S, Noji S, Ohuchi H (2005) A non-canonical photopigment, melanopsin, is expressed in the differentiating ganglion, horizontal, and bipolar cells of the chicken retina. Dev Dyn 234:783–790

    Article  PubMed  CAS  Google Scholar 

  • Voisin P, Bernard M (2009) Cyclic AMP-dependent activation of rhodopsin gene transcription in cultured retinal precursor cells of chicken embryo. J Neurochem 110:318–327

    Article  PubMed  CAS  Google Scholar 

  • Volpert KN, Rothermel A, Layer PG (2007) GDNF stimulates rod photoreceptors and dopaminergic amacrine cells in chicken retinal reaggregates. Invest Ophthalmol Vis Sci 48:5306–5314

    Article  PubMed  Google Scholar 

  • Wai SM, Yew DT (2002) A cytological study on the development of the different types of visual cells in the chicken (Gallus domesticus). Cell Mol Neurobiol 22:57–85

    Article  PubMed  Google Scholar 

  • Wiechmann AF, Craft CM (1993) Localization of mRNA encoding the indolamine synthesizing enzyme, hydroxyindole-O-methyltransferase, in chicken pineal gland and retina by in situ hybridization. Neurosci Lett 150:207–211

    Article  PubMed  CAS  Google Scholar 

  • Xie HQ, Adler R (2000) Green cone opsin and rhodopsin regulation by CNTF and staurosporine in cultured chick photoreceptors. Invest Ophthalmol Vis Sci 41:4317–4323

    PubMed  CAS  Google Scholar 

  • Yen L, Fager RS (1984) Chromatographic resolution of the rod pigment from the four cone pigments of the chicken retina. Vision Res 24:1555–1562

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama S (1996) Molecular evolution of retinal and nonretinal opsins. Genes Cells 1:787–794

    Article  PubMed  CAS  Google Scholar 

  • Zawilska JB, Iuvone PM (1992) Melatonin synthesis in chicken retina: effect of kainic acid-induced lesions on the diurnal rhythm and D2-dopamine receptor-mediated regulation of serotonin N-acetyltransferase activity. Neurosci Lett 135:71–74

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Mrs L. Cousin for her technical help at multiple steps of this work. We appreciate the technical assistance of the Service Commun de Publication Assistée par Ordinateur (Mr J. Habrioux).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Voisin.

Additional information

This work was supported by the CNRS (UMR 6187) and Retina France.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Northern blot validation of the probes used in ISH. Total RNA (20 μg) from adult chicken retina was electrophoresed on agarose gel, transferred on nitrocellulose membrane and hybridized under high-stringency conditions with 32P-labeled DNA probes specific for each of the five chicken opsins mRNAs. The probes were obtained by excising the inserts of the pGEMTeasy® plasmids used for generating the ISH cRNA probes. The radioactive blots were analyzed on a PhosphorImager. The sizes of the transcripts were estimated by comparing their migration with those of ribosomal RNAs (28S: 4 kb; 18S: 1.8 kb): RH1, 1.6 kb (major band) and 3 kb (minor band, possibly corresponding to unprocessed nuclear RNA); LWS, 1.6 kb; RH2, 2.8 kb; SWS2, 3.1 kb and SWS1, 3.7 kb (JPEG 21 kb)

High resolution image file (TIFF 7508 kb)

Fig. S2

Cell viability of retinal precursors cultured in serum-free medium. Retinal precursors dissociated at different incubation times (from E6 to E13) were cultured for 4 days in serum-free medium. Cell viability was measured with CellTiter96® on the starting day (t0) and after 4 days in culture. Results are presented as percentage of cell viability relative to t0. This shows that the absence of serum did not affect cell survival at any developmental stage (JPEG 30 kb)

High resolution image file (TIFF 13002 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voisin, P., Cailleau, V., Naud, N. et al. Visual photoreceptor subtypes in the chicken retina: melatonin-synthesizing activity and in vitro differentiation. Cell Tissue Res 348, 417–427 (2012). https://doi.org/10.1007/s00441-012-1374-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1374-z

Keywords

Navigation