Skip to main content

Advertisement

Log in

Comparative brain architecture of the European shore crab Carcinus maenas (Brachyura) and the common hermit crab Pagurus bernhardus (Anomura) with notes on other marine hermit crabs

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The European shore crab Carcinus maenas and the common hermit crab Pagurus bernhardus are members of the sister taxa Brachyura and Anomura (together forming the taxon Meiura) respectively. Both species share similar coastal marine habitats and thus are confronted with similar environmental conditions. This study sets out to explore variations of general brain architecture of species that live in seemingly similar habitats but belong to different major malacostracan taxa and to understand possible differences of sensory systems and related brain compartments. We examined the brains of Carcinus maenas, Pagurus bernhardus, and three other hermit crab species with immunohistochemistry against tyrosinated tubulin, f-actin, synaptic proteins, RF-amides and allatostatin. Our comparison showed that their optic neuropils within the eyestalks display strong resemblance in gross morphology as well as in detailed organization, suggesting a rather similar potential of processing visual input. Besides the well-developed visual system, the olfactory neuropils are distinct components in the brain of both C. maenas and P. bernhardus as well as the other hermit crabs, suggesting that close integration of olfactory and visual information may be useful in turbid marine environments with low visibility, as is typical for many habitats such as, e.g., the Baltic and the North Sea. Comparing the shape of the olfactory glomeruli in the anomurans showed some variations, ranging from a wedge shape to an elongate morphology. Furthermore, the tritocerebrum and the organization of the second antennae associated with the tritocerebrum seem to differ markedly in C. maenas and P. bernhardus, indicating better mechanosensory abilities in the latter close to those of other Decapoda with long second antennae, such as Astacida, Homarida, or Achelata. This aspect may also represent an adaptation to the “hermit lifestyle” in which competition for shells is a major aspect of their life history. The shore crab C. maenas, on the other hand seems to rely much less on mechanosensory information mediated by the second antennae but in water, the visual and the olfactory senses seem to be the most important modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbott NJ (1971) The organization of the cerebral ganglion in the shore crab, Carcinus maenas. Cell Tissue Res 120:401–419

    Google Scholar 

  • Ache BW, Derby CD (1985) Functional organization of olfaction in crustaceans. Trends Neurosci 8:356–360

    Article  Google Scholar 

  • Bamber SD, Naylor E (1996) Mating behaviour of male Carcinus maenas in relation to a putative sex pheromone: behavioural changes in response to antennule restriction. Mar Biol 125:483–488

    Google Scholar 

  • Beltz BS, Kordas K, Lee MM, Long JB, Benton JL (2003) Ecological, evolutionary, and functional correlates of sensilla number and glomerular density in the olfactory system of decapod crustaceans. J Comp Neurol 455:260–269

    Article  PubMed  Google Scholar 

  • Berrill M (1982) The life cycle of the green crab Carcinus maenas at the northern end of its range. J Crust Biol 2:31–39

    Article  Google Scholar 

  • Bethe A (1897a) Das Nervensystem von Carcinus maenas, ein anatomisch–physiologischer Versuch I. Theil I. Arch Mikrosk Anat 50:460–546

    Article  Google Scholar 

  • Bethe A (1897b) Das Centralnervensystem von Carcinus maenas. Ein anatomisch–physiologischer Versuch I. Theil II. Arch Mikrosk Anat 50:589–639

    Article  Google Scholar 

  • Bethe A (1898) Das Centralnervensystem von Carcinus maenas. Ein anatomisch–physiologischer Versuch. II. Theil. Arch Mikrosk Anat 51:382–452

    Article  Google Scholar 

  • Borradaile LA (1916) Crustacea. I. Decapoda II. Porcellanopagurus; an instance of carcinization. British Antarctic Terra Nova Expedition. 1910. Brit Mus (Nat Hist) Report Zoology 3:75–126

    Google Scholar 

  • Cape SS, Rehm KJ, Ma M, Marder E, Li L (2008) Mass spectral comparison of the neuropeptide complement of the stomatogastric ganglion and brain in the adult and embryonic lobster, Homarus americanus. J Neurochem 105:690–702

    Article  PubMed  CAS  Google Scholar 

  • Case J, Gwilliam G (1961) Amino acid sensitivity of the dactyl chemoreceptors of Carcinides maenas. Biol Bull 121:449–455

    Article  CAS  Google Scholar 

  • Christie AE, Sousa GL, Rus S, Smith CM, Towle DW, Hartline DK, Dickinson PS (2008) Identification of A-type allatostatins possessing-YXFGI/Vamide carboxy-termini from the nervous system of the copepod crustacean Calanus finmarchicus. Gen Comp Endocrinol 155:526–533

    Article  PubMed  CAS  Google Scholar 

  • Christie AE, Stemmler EA, Dickinson PS (2010) Crustacean neuropeptides. Cell Mol Life Sci 67:4135–4169

    Article  PubMed  CAS  Google Scholar 

  • Darbyson EA, Hanson JM, Locke A, Willison JHM (2009) Survival of European green crab (Carcinus maenus L.) exposed to simulated overland and boating-vector transport conditions. J Shellfish Res 28:377–382

    Article  Google Scholar 

  • Derby CD, Atema J (1988) Chemoreceptor cells in aquatic invertebrates: peripheral mechanisms of chemical signal processing in decapod crustaceans. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 365–385

    Chapter  Google Scholar 

  • Dircksen H, Keller R (1988) Immunocytochemical localization of CCAP, a novel crustacean cardioactive peptide, in the nervous system of the shore crab, Carcinus maenas L. Cell Tissue Res 254:347–360

    Article  Google Scholar 

  • Dircksen H, Zahnow CA, Gaus G, Keller R, Rao KR, Riehm JP (1987) The ultrastructure of nerve endings containing pigment-dispersing hormone (PDH) in crustacean sinus glands: identification by an antiserum against a synthetic PDH. Cell Tissue Res 250:377–387

    Article  CAS  Google Scholar 

  • Dircksen H, Skiebe P, Abel B, Agricola HJ, Buchner K, Muren JE, Nässel DR (1999) Structure, distribution, and biological activity of novel members of the allatostatin family in the crayfish Orconectes limosus. Peptides 20:695–712

    Article  PubMed  CAS  Google Scholar 

  • Dockray GJ (2004) The expanding family of RFamide peptides and their effects on feeding behaviour. Exp Physiol 89:229–235

    Article  PubMed  CAS  Google Scholar 

  • Duve H, Johnsen AH, Maestro JL, Scott AG, Jaros PP, Thorpe A (1997) Isolation and identification of multiple neuropeptides of the allatostatin superfamily in the shore crab Carcinus maenas. Eur J Biochem 250:727–734

    Article  PubMed  CAS  Google Scholar 

  • Duve H, Johnsen AH, Scott AG, Thorpe A (2002) Allatostatins of the tiger prawn, Penaeus monodon (Crustacea: Penaeidea). Peptides 23:1039–1051

    Article  PubMed  CAS  Google Scholar 

  • Eales AJ (1973) Sex pheromone in the shore crab Carcinus maenas, and the site of its release from females. Mar Behav Physiol 2:345–355

    Article  Google Scholar 

  • Elwood RW, McClean A, Webb L (1979) The development of shell preferences by the hermit crab Pagurus bernhardus. Anim Behav 27:940–946

    Article  Google Scholar 

  • Fu Q, Christie AE, Li L (2005) Mass spectrometric characterization of crustacean hyperglycemic hormone precursor-related peptides (CPRPs) from the sinus gland of the crab, Cancer productus. Peptides 26:2137–2150

    Article  PubMed  CAS  Google Scholar 

  • Gherardi F, Tricarico E (2007) Can hermit crabs recognize social partners by odors? And why? Mar Freshwat Behav Physiol 40:201–212

    Article  Google Scholar 

  • Gherardi F, Tricarico E (2011) Chemical ecology and social behavior of anomura. In: Breithaupt T, Thiel M (eds) Chemical communication in crustaceans. Springer, New York, pp 297–312

    Google Scholar 

  • Ghiradella HT, Case JF, Cronshaw J (1968) Structure of aesthetascs in selected marine and terrestrial decapods: chemoreceptor morphology and environment. Am Zool 8:603–621

    PubMed  CAS  Google Scholar 

  • Gleeson RA (1982) Morphological and behavioral identification of the sensory structures mediating pheromone reception in the blue crab, Callinectes sapidus. Biol Bull 163:162–171

    Article  Google Scholar 

  • Goldstone MW, Cooke IM (1971) Histochemical localization of monoamines in the crab central nervous system. Cell Tissue Res 116:7–19

    CAS  Google Scholar 

  • Greenberg MJ, Price DA (1992) Chapter 3: relationships among the FMRFamide-like peptides. In: Joosse J, Buijs RM, Tilders FJH (eds) The peptidergic neuron. Elsevier, Amsterdam, pp 25–37

    Chapter  Google Scholar 

  • Hallberg E, Skog M (2011) Chemosensory sensilla in crustaceans. In: Breithaupt T, Thiel M (eds) Chemical communication in crustaceans. Springer, New York, pp 103–121

    Google Scholar 

  • Hallberg E, Johansson KUI, Elofsson R (1992) The aesthetasc concept: structural variations of putative olfactory receptor cell complexes in Crustacea. Microsc Res Tech 22:325–335

    Article  PubMed  CAS  Google Scholar 

  • Hansson BS, Harzsch S, Knaden M, Stensmyr MC (2011) The neural and behavioral basis of chemical communication in terrestrial crustaceans. In: Breithaupt T, Thiel M (eds) Chemical communication in crustaceans. Springer, New York, pp 149–173

    Google Scholar 

  • Hanström B (1925) The olfactory centers in Crustaceans. J Comp Neurol 38:221–250

    Article  Google Scholar 

  • Hardege JD, Jennings A, Hayden D, Müller CT, Pascoe D, Bentley MG, Clare AS (2002) Novel behavioural assay and partial purification of a female-derived sex pheromone in Carcinus maenas. Mar Ecol Prog Ser 244:179–189

    Article  CAS  Google Scholar 

  • Hardege JD, Bartels-Hardege HD, Fletcher N, Terschak JA, Harley M, Smith MA, Davidson L, Hayden D, Müller CT, Lorch M, Welham K, Walther T, Bublitz R (2011) Identification of a female sex pheromone in Carcinus maenas. Mar Ecol Prog Ser 436:177–189

    Article  CAS  Google Scholar 

  • Harzsch S (2002) The phylogenetic significance of crustacean optic neuropils and chiasmata: a re-examination. J Comp Neurol 453:10–21

    Article  PubMed  Google Scholar 

  • Harzsch S, Dawirs RR (1993) On the morphology of the central nervous system in larval stages of Carcinus maenas L. (Decapoda, Brachyura). Helgoland Mar Res 47:61–79

    Google Scholar 

  • Harzsch S, Hansson BS (2008) Brain architecture in the terrestrial hermit crab Coenobita clypeatus (Anomura, Coenobitidae), a crustacean with a good aerial sense of smell. BMC Neurosci 9:58

    Article  PubMed  CAS  Google Scholar 

  • Harzsch S, Müller CHG (2007) A new look at the ventral nerve centre of Sagitta: implications for the phylogenetic position of Chaetognatha (arrow worms) and the evolution of the bilaterian nervous system. Front Zool 4:14

    Article  PubMed  Google Scholar 

  • Harzsch S, Anger K, Dawirs RR (1997) Immunocytochemical detection of acetylated alpha-tubulin and Drosophila synapsin in the embryonic crustacean nervous system. Int J Dev Biol 41:477–484

    PubMed  CAS  Google Scholar 

  • Harzsch S, Miller J, Benton JL, Dawirs RR, Beltz BS (1998) Neurogenesis in the thoracic neuromeres of two crustaceans with different types of metamorphic development. J Exp Biol 201:2465–2479

    PubMed  Google Scholar 

  • Harzsch S, Miller J, Benton JL, Beltz BS (1999) From embryo to adult: persistent neurogenesis and apoptotic cell death shape the lobster deutocerebrum. J Neurosci 19:3472–3485

    PubMed  CAS  Google Scholar 

  • Harzsch S, Rieger V, Krieger J, Seefluth F, Strausfeld NJ, Hansson BS (2011) Transition from marine to terrestrial ecologies: Changes in olfactory and tritocerebralneuropils in land-living isopods. Arthropod Struct Dev 40:244–257

    Article  PubMed  CAS  Google Scholar 

  • Hazlett BA (1968) Effects of crowding on the agonistic behavior of the hermit crab Pagurus bernhardus. Ecology 49:573–575

    Article  Google Scholar 

  • Hazlett BA (1970) Tactile stimuli in the social behavior of Pagurus bernhardus (Decapoda, Paguridae). Behaviour 36:20–48

    Article  Google Scholar 

  • Hazlett BA (1981) The behavioral ecology of hermit crabs. Annu Rev Ecol Syst 12:1–22

    Article  Google Scholar 

  • Hejnol A, Martindale M (2009) Coordinated spatial and temporal expression of Hox genes during embryogenesis in the acoel Convolutriloba longifissura. BMC Biol 7:65

    Article  PubMed  CAS  Google Scholar 

  • Helm F (1928) Vergleichend-anatomische Untersuchungen über das Gehirn, insbesondere das “Antennalganglion” der Dekapoden. Z Morph Ökol Tiere 12:70–134

    Article  Google Scholar 

  • Homberg U (1994) Distribution of neurotransmitters in the insect brain. In: Rathmayer W (ed) Progress in zoology Vol. 40. Gustav Fischer, Stuttgart

    Google Scholar 

  • Huybrechts J, Nusbaum MP, Bosch LV, Baggerman G, Loof AD, Schoofs L (2003) Neuropeptidomic analysis of the brain and thoracic ganglion from the Jonah crab, Cancer borealis. Biochem Biophys Res Commun 308:535–544

    Article  PubMed  CAS  Google Scholar 

  • Klagges BRE, Heimbeck G, Godenschwege TA, Hofbauer A, Pflugfelder GO, Reifegerste R, Reisch D, Schaupp M, Buchner E, Buchner S (1996) Invertebrate synapsins: a single gene codes for several isoforms in Drosophila. J Neurosci 16:3154–3165

    PubMed  CAS  Google Scholar 

  • Klassen G, Locke A (2007) A biological synopsis of the European green crab, Carcinus maenas. Can J Fish Aquat Sci 2818:1–87

    Google Scholar 

  • Kreis TE (1987) Microtubules containing detyrosinated tubulin are less dynamic. EMBO J 6:2597–2606

    PubMed  CAS  Google Scholar 

  • Kreissl S, Strasser C, Galizia CG (2010) Allatostatin Immunoreactivity in the Honeybee Brain. J Comp Neurol 518:1391–1417

    Article  PubMed  CAS  Google Scholar 

  • Krieger J, Sandeman RE, Sandeman DC, Hansson BS, Harzsch S (2010) Brain architecture of the largest living land arthropod, the Giant Robber Crab Birgus latro (Crustacea, Anomura, Coenobitidae): evidence for a prominent central olfactory pathway? Front Zool 7:25

    Article  PubMed  Google Scholar 

  • Lancaster I (1988) Pagurus bernhardus (L.)-An introduction to the natural history of hermit crabs. Field Studies 7:189–238

    Google Scholar 

  • Langworthy K, Helluy S, Benton JL, Beltz BS (1997) Amines and peptides in the brain of the American lobster: immunocytochemical localization patterns and implications for brain function. Cell Tissue Res 288:191–206

    Article  PubMed  CAS  Google Scholar 

  • Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the world’s worst invasive alien species - a selection from the Global Invasive Species Database. Published by The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN), 12 pp

  • Ma M, Chen R, Sousa GL, Bors EK, Kwiatkowski MA, Goiney CC, Goy MF, Christie AE, Li L (2008) Mass spectral characterization of peptide transmitters/hormones in the nervous system and neuroendocrine organs of the American lobster Homarus americanus. Gen Comp Endocrinol 156:395–409

    Article  PubMed  CAS  Google Scholar 

  • Ma M, Bors EK, Dickinson ES, Kwiatkowski MA, Sousa GL, Henry RP, Smith CM, Towle DW, Christie AE, Li L (2009a) Characterization of the Carcinus maenas neuropeptidome by mass spectrometry and functional genomics. Gen Comp Endocrinol 161:320–334

    Article  PubMed  CAS  Google Scholar 

  • Ma M, Szabo TM, Jia C, Marder E, Li L (2009b) Mass spectrometric characterization and physiological actions of novel crustacean C-type allatostatins. Peptides 30:1660–1668

    Article  PubMed  CAS  Google Scholar 

  • Ma M, Gard AL, Xiang F, Wang J, Davoodian N, Lenz PH, Malecha SR, Christie AE, Li L (2010) Combining in silico transcriptome mining and biological mass spectrometry for neuropeptide discovery in the Pacific white shrimp Litopenaeus vannamei. Peptides 31:27–43

    Article  PubMed  CAS  Google Scholar 

  • Mangerich S, Keller R (1988) Localization of pigment-dispersing hormone (PDH) immunoreactivity in the central nervous system of Carcinus maenas and Orconectes limosus (Crustacea), with reference to FMRFamide immunoreactivity in O. limosus. Cell Tissue Res 253:199–208

    Article  PubMed  CAS  Google Scholar 

  • Mangerich S, Keller R, Dircksen H, Rao KR, Riehm JP (1987) Immunocytochemical localization of pigment-dispersing hormone (PDH) and its coexistence with FMRFamide-immunoreactive material in the eyestalks of the decapod crustaceans Carcinus maenas and Orconectes limosus. Cell Tissue Res 250:365–375

    Article  Google Scholar 

  • McLaughlin PA, Lemaitre R (1997) Carcinization in the Anomura—fact or fiction? I. Evidence from adult morphology. Contrib Zool 67:79–123

    Google Scholar 

  • McLaughlin PA, Lemaitre R, Tudge CC (2004) Carcinization in the Anomura-fact or fiction? II. Evidence from larval, megalopal and early juvenile morphology. Contrib Zool 73:165–206

    Google Scholar 

  • Mercier AJ, Friedrich R, Boldt M (2003) Physiological functions of FMRFamide–like peptides (FLPs) in crustaceans. Microsc Res Tech 60:313–324

    Article  PubMed  CAS  Google Scholar 

  • Nässel DR (1993) Neuropeptides in the insect brain: a review. Cell Tissue Res 273:1–29

    Article  PubMed  Google Scholar 

  • Nässel DR, Elofsson R (1987) Comparative anatomy of the crustacean brain. In: Gupta AP (ed) Arthropod brain: Its evolution, development, structure, and functions. Wiley & Sons, New York, pp 111–133

    Google Scholar 

  • Nässel DR, Homberg U (2006) Neuropeptides in interneurons of the insect brain. Cell Tissue Res 326:1–24

    Article  PubMed  CAS  Google Scholar 

  • Paul DH (2003) Neurobiology of the Anomura: Paguroidea, Galatheoidea and Hippoidea. Mem Mus Vict 60:3–11

    Google Scholar 

  • Price DA, Greenberg MJ (1989) The hunting of the FaRPs: the distribution of FMRFamide-related peptides. Biol Bull 177:198–205

    Article  CAS  Google Scholar 

  • Reese ES (1962) Shell selection behaviour of hermit crabs. Anim Behav 10:347–360

    Article  Google Scholar 

  • Reese ES (1963) The behavioral mechanisms underlying shell selection by hermit crabs. Behaviour 21:78–126

    Article  Google Scholar 

  • Reese ES (1969) Behavioral adaptations of intertidal hermit crabs. Integr Comp Biol 9:343–355

    Article  Google Scholar 

  • Reimann A, Richter S, Scholtz G (2011) Phylogeny of the Anomala (Crustacea, Decapoda, Reptantia) based on the ossicles of the foregut. Zool Anz 250:316–342

    Article  Google Scholar 

  • Richter S, Loesel R, Purschke G, Schmidt-Rhaesa A, Scholtz G, Stach T, Vogt L, Wanninger A, Brenneis G, Döring C, Faller S, Fritsch M, Grobe P, Heuer CM, Kaul S, Möller OS, Müller CHG, Rieger V, Rothe BH, Stegner MEJ, Harzsch S (2010) Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary. Front Zool 7:29

    Article  PubMed  Google Scholar 

  • Rudolph PH, Spaziani E (1990) Distribution of serotonergic neurons in the eyestalk and brain of the crab, Cancer antennarius. Comp Biochem Physiol C Pharmacol 97:241–245

    Article  Google Scholar 

  • Sandeman DC (1982) Organization of the central nervous system. In: Atwood HL, Sandeman DC (eds) The biology of crustacea — neurobiology, structure and function. Academic Press, New York, pp 1–61

    Google Scholar 

  • Sandeman DC, Mellon DF Jr (2002) Olfactory centers in the brain of freshwater crayfish. In: Wiese K (ed) The crustacean nervous system. Springer, New York, pp 386–404

    Google Scholar 

  • Sandeman DC, Scholtz G (1995) Ground plans, evolutionary changes and homologies in decapod crustacean brains. In: Breidbach O, Kutsch W (eds) The nervous systems of invertebrates: an evolutionary and comparative approach. Birkhäuser Verlag, Basel, pp 329–347

    Chapter  Google Scholar 

  • Sandeman DC, Varju D (1988) A behavioural study of tactile localization in the crayfish Cherax destructor. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 163:525–536

    Article  Google Scholar 

  • Sandeman DC, Sandeman RE, Derby CD, Schmidt M (1992) Morphology of the brain of crayfish, crabs, and spiny lobsters: a common nomenclature for homologous structures. Biol Bull 183:304–326

    Article  Google Scholar 

  • Sandeman DC, Scholtz G, Sandeman RE (1993) Brain evolution in decapod crustacea. J Exp Zool 265:112–133

    Article  Google Scholar 

  • Sandeman DC, Kenning M, Harzsch S (in press) Adaptive trends in malacostracan brain form and function related to behavior. In: Derby C and Thiel M (eds.) Crustaceans as model system in neurobiology. Springer, New York

  • Schachtner J, Schmidt M, Homberg U (2005) Organization and evolutionary trends of primary olfactory brain centers in Tetraconata (Crustacea + Hexapoda). Arthropod Struct Dev 34:257–299

    Article  Google Scholar 

  • Schmidt M (1989) The hair-peg organs of the shore crab, Carcinus maenas (Crustacea, Decapoda): ultrastructure and functional properties of sensilla sensitive to changes in seawater concentration. Cell Tissue Res 257:609–621

    Article  Google Scholar 

  • Schmidt M (1997a) Continuous neurogenesis in the olfactory brain of adult shore crabs, Carcinus maenas. Brain Res 762:131–143

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M (1997b) Distribution of presumptive chemosensory afferents with FMRFamide- or substance P-like immunoreactivity in decapod crustaceans. Brain Res 746:71–84

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M (1997c) Distribution of centrifugal neurons targeting the soma clusters of the olfactory midbrain among decapod crustaceans. Brain Res 752:15–25

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M (2007) The olfactory pathway of decapod crustaceans—an invertebrate model for life-long neurogenesis. Chem Senses 32:365–384

    Article  PubMed  Google Scholar 

  • Schmidt M, Ache BW (1996) Processing of antennular input in the brain of the spiny lobster, Panulirus argus. I. Non-olfactory chemosensory and mechanosensory pathway of the lateral and median antennular neuropils. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 178:579–604

    Article  Google Scholar 

  • Schmidt M, Ache BW (1997) Immunocytochemical analysis of glomerular regionalization and neuronal diversity in the olfactory deutocerebrum of the spiny lobster. Cell Tissue Res 287:541–563

    Article  PubMed  Google Scholar 

  • Schmidt M, Mellon DF Jr (2011) Neuronal processing of chemical information in crustaceans. In: Breithaupt T, Thiel M (eds) Chemical communication in crustaceans. Springer, New York, pp 123–147

    Google Scholar 

  • Semmler H, Chiodin M, Bailly X et al (2010) Steps towards a centralized nervous system in basal bilaterians: Insights from neurogenesis of the acoel Symsagittifera roscoffensis. Dev Growth Differ 52:701–713

    Article  PubMed  CAS  Google Scholar 

  • Sinakevitch I, Douglass JK, Scholtz G, Loesel R, Strausfeld NJ (2003) Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa. J Comp Neurol 467:150–172

    Article  PubMed  CAS  Google Scholar 

  • Skiebe P (1999) Allatostatin-like immunoreactivity in the stomatogastric nervous system and the pericardial organs of the crab Cancer pagurus, the lobster Homarus americanus, and the crayfish Cherax destructor and Procambarus clarkii. J Comp Neurol 403:85–105

    Article  PubMed  CAS  Google Scholar 

  • Snow PJ (1973) Ultrastructure of the aesthetasc hairs of the littoral decapod, Paragrapsus gaimardii. Cell Tissue Res 138:489–502

    CAS  Google Scholar 

  • Sombke A, Harzsch S, Hansson BS (2011) Organization of deutocerebral neuropils and olfactory behavior in the centipede Scutigera coleoptrata (Linnaeus, 1758) (Myriapoda: Chilopoda). Chem Senses 36:43–61

    Article  PubMed  Google Scholar 

  • Stay B, Tobe SS (2007) The role of allatostatins in juvenile hormone synthesis in insects and crustaceans. Annu Rev Entomol 52:277–299

    Article  PubMed  CAS  Google Scholar 

  • Stay B, Tobe SS, Bendena WG (1995) Allatostatins: identification, primary structures, functions and distribution. Adv Insect Physiol 25:267–337

    Article  Google Scholar 

  • Stevcic Z (1971) The main features of brachyuran evolution. Syst Zool 20:331–340

    Article  Google Scholar 

  • Strausfeld NJ (2005) The evolution of crustacean and insect optic lobes and the origins of chiasmata. Arthropod Struct Dev 34:235–256

    Article  Google Scholar 

  • Strausfeld NJ, Nässel DR (1980) Neuroarchitecture of brain regions that subserve the compound eyes of Crustacea and insects. In: Autrum H (ed) Handbook of sensory physiology. Springer, New York

    Google Scholar 

  • Sullivan JM, Beltz BS (2001) Neural pathways connecting the deutocerebrum and lateral protocerebrum in the brains of decapod crustaceans. J Comp Neurol 441:9–22

    Article  PubMed  CAS  Google Scholar 

  • Sullivan JM, Beltz BS (2005a) Adult neurogenesis in the central olfactory pathway in the absence of receptor neuron turnover in Libinia emarginata. Eur J Neurosci 22:2397–2402

    Article  PubMed  Google Scholar 

  • Sullivan JM, Beltz BS (2005b) Integration and segregation of inputs to higher-order neuropils of the crayfish brain. J Comp Neurol 481:118–126

    Article  PubMed  Google Scholar 

  • Sullivan JM, Benton JL, Sandeman DC, Beltz BS (2007) Adult neurogenesis: a common strategy across diverse species. J Comp Neurol 500:574–584

    Article  PubMed  Google Scholar 

  • Sztarker J, Strausfeld NJ, Tomsic D (2005) Organization of optic lobes that support motion detection in a semiterrestrial crab. J Comp Neurol 493:396–411

    Article  PubMed  Google Scholar 

  • Sztarker J, Strausfeld NJ, Andrew D, Tomsic D (2009) Neural organization of first optic neuropils in the littoral crab Hemigrapsus oregonensis and the semiterrestrial species Chasmagnathus granulatus. J Comp Neurol 513:129–150

    Article  PubMed  Google Scholar 

  • Tautz J, Müller-Tautz R (1983) Antennal neuropile in the brain of the crayfish: morphology of neurons. J Comp Neurol 218:415–425

    Article  PubMed  CAS  Google Scholar 

  • Taylor RC (1975) Integration in the crayfish antennal neuropile: topographic representation and multiple-channel coding of mechanoreceptive submodalities. J Neurobiol 6:475–499

    Article  PubMed  CAS  Google Scholar 

  • Tsvileneva VA, Titova VA (1985) On the brain structures of decapods. Zool Jahrb Abt Anat Ontog Tiere 113:217–266

    Google Scholar 

  • Tsvileneva VA, Titova VA, Kvashina TV (1985) Brain topography of the shore crab Hemigrapsus sanguineus. J Evol Biochem Physiol 21:394–400

    Google Scholar 

  • Utting M, Agricola HJ, Sandeman RE, Sandeman DC (2000) Central complex in the brain of crayfish and its possible homology with that of insects. J Comp Neurol 416:245–261

    Article  PubMed  CAS  Google Scholar 

  • Van Der Meeren GI (1994a) Sex-and size-dependent mating tactics in a natural population of shore crabs Carcinus maenas. J Anim Ecol 63:307–314

    Article  Google Scholar 

  • van der Meeren GI (1994b) Sex-and size-dependent mating tactics in a natural population of shore crabs Carcinus maenas. J Anim Ecol 63:307–314

    Article  Google Scholar 

  • Vilpoux K, Sandeman RE, Harzsch S (2006) Early embryonic development of the central nervous system in the Australian crayfish and the Marbled crayfish (Marmorkrebs). Dev Genes Evol 216:209–223

    Article  PubMed  CAS  Google Scholar 

  • Vitzthum H, Homberg U, Agricola H (1996) Distribution of Dip-allatostatin I-like immunoreactivity in the brain of the locust Schistocerca gregaria with detailed analysis of immunostaining in the central complex. J Comp Neurol 369:419–437

    Article  PubMed  CAS  Google Scholar 

  • Wight K, Francis L, Eldridge D (1990) Food aversion learning by the hermit crab Pagurus granosimanus. Biol Bull 178:205–209

    Article  Google Scholar 

  • Wilson E (2007) Pagurus bernhardus. Hermit crab. Marine Life Information Network: biology and sensitivity key information sub-programme. Marine Biological Association of the United Kingdom, Plymouth [on-line]

  • Wood DE, Derby CD (1996) Distribution of dopamine-like immunoreactivity suggests a role for dopamine in the courtship display behavior of the blue crab, Callinectes sapidus. Cell Tissue Res 285:321–330

    Article  PubMed  CAS  Google Scholar 

  • Yasuda-Kamatani Y, Yasuda A (2006) Characteristic expression patterns of allatostatin-like peptide, FMRFamide-related peptide, orcokinin, tachykinin-related peptide, and SIFamide in the olfactory system of crayfish Procambarus clarkii. J Comp Neurol 496:135–147

    Article  PubMed  CAS  Google Scholar 

  • Yin GL, Yang JS, Cao JX, Yang WJ (2006) Molecular cloning and characterization of FGLamide allatostatin gene from the prawn, Macrobrachium rosenbergii. Peptides 27:1241–1250

    Article  PubMed  CAS  Google Scholar 

  • Zajac J, Mollereau C (2006) RFamide peptides. Editorial introduction. Peptides 27:941–942

    Article  PubMed  CAS  Google Scholar 

  • Zeil J, Sandeman RE, Sandeman DC (1985) Tactile localisation: the function of active antennal movements in the crayfish Cherax destructor. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 157:607–617

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indepted to Erich Buchner (Würzburg) for the kind provision of the SYNORF1 synapsin antibody. We wish to thank Hans Agricola (Friedrich Schiller University Jena) for the allatostatin antiserum and Verena Rieger (Greifswald) for providing the photograph of Carcinus maenas. The authors are grateful for the assistance of Gilles Maron and Franck Gentil at the Station Biologique de Roscoff in France for provision of Pagurus bernhardus and for their general support. We would like to express our gratitude to Guido Dehnhardt and the staff of the Marine Science Center in Rostock for free provision of diving equipment and the permission to sample Carcinus maenas on-site. We cordially thank C. H. G. Müller (Greifswald) for providing specimens of the marine anomurans of the Mediterranean Calcinus tubularis, Clibanarius eythropus and Diogenes pugilator from the island of Ibiza. David C. Sandeman is acknowledged for kindly commenting on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Krieger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krieger, J., Sombke, A., Seefluth, F. et al. Comparative brain architecture of the European shore crab Carcinus maenas (Brachyura) and the common hermit crab Pagurus bernhardus (Anomura) with notes on other marine hermit crabs. Cell Tissue Res 348, 47–69 (2012). https://doi.org/10.1007/s00441-012-1353-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1353-4

Keywords

Navigation