Skip to main content

Advertisement

Log in

The adhering junctions of valvular interstitial cells: molecular composition in fetal and adult hearts and the comings and goings of plakophilin-2 in situ, in cell culture and upon re-association with scaffolds

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The interstitial cells of cardiac valves represent one of the most frequent cell types in the mammalian heart. In order to provide a cell and molecular biological basis for the growth of isolated valvular interstitial cells (VICs) in cell culture and for the use in re-implantation surgery we have examined VICs in situ and in culture, in fetal, postnatal and adult hearts, in re-associations with scaffolds of extracellular matrix (ECM) material and decellularized heart valves. In all four mammalian species examined (human, bovine, porcine and ovine), the typical mesenchymal-type cell-cell adherens junctions (AJs) connecting VICs appear as normal N-cadherin based puncta adhaerentia. Their molecular ensemble, however, changes under various growth conditions insofar as plakophilin-2 (Pkp2), known as a major cytoplasmic plaque component of epithelial desmosomes, is recruited to and integrated in the plaques of VIC-AJs as a major component under growth conditions characterized by enhanced proliferation, i.e., in fetal heart valves and in cell cultures. Upon re-seeding onto decellularized heart valves or in stages of growth in association with artificial scaffolds, Pkp2 is — for the most part — lost from the AJs. As Pkp2 has recently also been detected in AJs of cardiac myxomata and diverse other mesenchymal tumors, the demonstrated return to the normal Pkp2-negative state upon re-association with ECM scaffolds and decellularized heart valves may now provide a safe basis for the use of cultured VICs in valve replacement surgery. Even more surprising, this type of transient acquisition of Pkp2 has also been observed in distinct groups of endothelial cells of the endocardium, where it seems to correspond to the cell type ready for endothelial–mesenchymal transition (EMT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AJ:

adherens junction

ECM:

extracellular matrix

IP:

immunoprecipitation

Pkp2:

plakophilin-2

VICs:

valvular interstitial cells

EMT:

endothelial–mesenchymal transition

References

  • Akhyari P, Aubin H, Gwanmesia P, Barth M, Hoffmann S, Huelsmann J, Preuss K, Lichtenberg A (2011) The quest for an optimized protocol for whole-heart decellularization: a comparison of three popular and a novel decellularization technique and their diverse effects on crucial extracellular matrix qualities. Tissue Eng Part C Methods 17:915–926

    Article  PubMed  CAS  Google Scholar 

  • Alcalai R, Metzger S, Rosenheck S, Meiner V, Chajek-Shaul T (2003) A recessive mutation in desmoplakin causes arrhythmogenic right ventricular dysplasia, skin disorder, and woolly hair. J Am Coll Cardiol 42:319–327

    Article  PubMed  CAS  Google Scholar 

  • Armstrong EJ, Bischoff J (2004) Heart valve development: endothelial cell signaling and differentiation. Circ Res 95:459–470

    Article  PubMed  CAS  Google Scholar 

  • Bader A, Schilling T, Teebken OE, Brandes G, Herden T, Steinhoff G, Haverich A (1998) Tissue engineering of heart valves—human endothelial cell seeding of detergent acellularized porcine valves. Eur J Cardiothorac Surg 14:279–284

    Article  PubMed  CAS  Google Scholar 

  • Bairati A, DeBiasi S (1981) Presence of a smooth muscle system in aortic valve leaflets. Anat Embryol (Berl) 161:329–340

    Article  CAS  Google Scholar 

  • Balachandran K, Alford PW, Wylie-Sears J, Goss JA, Grosberg A, Bischoff J, Aikawa E, Levine RA, Parker KK (2011) Cyclic strain induces dual-mode endothelial–mesenchymal transformation of the cardiac valve. Proc Natl Acad Sci USA 108:19943–19948

    Article  PubMed  CAS  Google Scholar 

  • Barth M (2011) The cell and molecular biological characterization of cell–cell junctions in mammalian heart valves. Faculty of Biology. University of Heidelberg, Heidelberg, Germany, pp 1–161

    Google Scholar 

  • Barth M, Schumacher H, Kuhn C, Akhyari P, Lichtenberg A, Franke WW (2009) Cordial connections: molecular ensembles and structures of adhering junctions connecting interstitial cells of cardiac valves in situ and in cell culture. Cell Tissue Res 337:63–77

    Article  PubMed  CAS  Google Scholar 

  • Bass-Zubek AE, Godsel LM, Delmar M, Green KJ (2009) Plakophilins: multifunctional scaffolds for adhesion and signaling. Curr Opin Cell Biol 21:708–716

    Article  PubMed  CAS  Google Scholar 

  • Bertipaglia B, Ortolani F, Petrelli L, Gerosa G, Spina M, Pauletto P, Casarotto D, Marchini M, Sartore S (2003) Cell characterization of porcine aortic valve and decellularized leaflets repopulated with aortic valve interstitial cells: the VESALIO Project (Vitalitate Exornatum Succedaneum Aorticum Labore Ingenioso Obtenibitur). Ann Thorac Surg 75:1274–1282

    Article  PubMed  Google Scholar 

  • Bischoff J, Aikawa E (2011) Progenitor cells confer plasticity to cardiac valve endothelium. J Cardiovasc Transl Res 4:710–719

    Article  PubMed  Google Scholar 

  • Blevins TL, Carroll JL, Raza AM, Grande-Allen KJ (2006) Phenotypic characterization of isolated valvular interstitial cell subpopulations. J Heart Valve Dis 15:815–822

    PubMed  Google Scholar 

  • Blevins TL, Peterson SB, Lee EL, Bailey AM, Frederick JD, Huynh TN, Gupta V, Grande-Allen KJ (2007) Mitral valvular interstitial cells demonstrate regional, adhesional, and synthetic heterogeneity. Cells Tissues Organs 187:113–122

    Article  PubMed  Google Scholar 

  • Boda-Heggemann J, Regnier-Vigouroux A, Franke WW (2009) Beyond vessels: occurrence and regional clustering of vascular endothelial (VE-)cadherin-containing junctions in non-endothelial cells. Cell Tissue Res 335:49–65

    Article  PubMed  CAS  Google Scholar 

  • Borrmann CM (2002) Molekulare Charakterisierung der Adhaerens-Zellverbindungen des Herzens: Identifizierung einer neuen Art, der Area Composita. Faculty of Biology. University of Heidelberg, Heidelberg, Germany, pp 1–119

    Google Scholar 

  • Borrmann CM, Grund C, Kuhn C, Hofmann I, Pieperhoff S, Franke WW (2006) The area composita of adhering junctions connecting heart muscle cells of vertebrates. II. Colocalizations of desmosomal and fascia adhaerens molecules in the intercalated disk. Eur J Cell Biol 85:469–485

    Article  PubMed  CAS  Google Scholar 

  • Brand NJ, Roy A, Hoare G, Chester A, Yacoub MH (2006) Cultured interstitial cells from human heart valves express both specific skeletal muscle and non-muscle markers. Int J Biochem Cell Biol 38:30–42

    Article  PubMed  CAS  Google Scholar 

  • Brody S, Anilkumar T, Liliensiek S, Last JA, Murphy CJ, Pandit A (2006) Characterizing nanoscale topography of the aortic heart valve basement membrane for tissue engineering heart valve scaffold design. Tissue Eng 12:413–421

    Article  PubMed  Google Scholar 

  • Butcher JT, Tressel S, Johnson T, Turner D, Sorescu G, Jo H, Nerem RM (2006) Transcriptional profiles of valvular and vascular endothelial cells reveal phenotypic differences: influence of shear stress. Arterioscler Thromb Vasc Biol 26:69–77

    Article  PubMed  CAS  Google Scholar 

  • Butcher JT, Mahler GJ, Hockaday LA (2011) Aortic valve disease and treatment: the need for naturally engineered solutions. Adv Drug Deliv Rev 63:242–268

    Article  PubMed  CAS  Google Scholar 

  • Cebotari S, Mertsching H, Kallenbach K, Kostin S, Repin O, Batrinac A, Kleczka C, Ciubotaru A, Haverich A (2002) Construction of autologous human heart valves based on an acellular allograft matrix. Circulation 106:I63–I68

    PubMed  Google Scholar 

  • Cebotari S, Lichtenberg A, Tudorache I, Hilfiker A, Mertsching H, Leyh R, Breymann T, Kallenbach K, Maniuc L, Batrinac A, Repin O, Maliga O, Ciubotaru A, Haverich A (2006) Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation 114:I132–I137

    Article  PubMed  Google Scholar 

  • Chester AH, Taylor PM (2007) Molecular and functional characteristics of heart-valve interstitial cells. Philos Trans R Soc Lond B Biol Sci 362:1437–1443

    Article  PubMed  CAS  Google Scholar 

  • Cimini M, Rogers KA, Boughner DR (2003) Smoothelin-positive cells in human and porcine semilunar valves. Histochem Cell Biol 120:307–317

    Article  PubMed  CAS  Google Scholar 

  • Colazzo F, Chester AH, Taylor PM, Yacoub MH (2010) Induction of mesenchymal to endothelial transformation of adipose-derived stem cells. J Heart Valve Dis 19:736–744

    PubMed  Google Scholar 

  • Combs MD, Yutzey KE (2009) Heart valve development: regulatory networks in development and disease. Circ Res 105:408–421

    Article  PubMed  CAS  Google Scholar 

  • de Lange FJ, Moorman AF, Anderson RH, Manner J, Soufan AT, de Gier-de VC, Schneider MD, Webb S, van den Hoff MJ, Christoffels VM (2004) Lineage and morphogenetic analysis of the cardiac valves. Circ Res 95:645–654

    Article  PubMed  Google Scholar 

  • Dejana E, Orsenigo F, Molendini C, Baluk P, McDonald DM (2009) Organization and signaling of endothelial cell-to-cell junctions in various regions of the blood and lymphatic vascular trees. Cell Tissue Res 335:17–25

    Article  PubMed  Google Scholar 

  • Delmar M, McKenna WJ (2010) The cardiac desmosome and arrhythmogenic cardiomyopathies: from gene to disease. Circ Res 107:700–714

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg LM, Markwald RR (1995) Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ Res 77:1–6

    PubMed  CAS  Google Scholar 

  • Filip DA, Radu A, Simionescu M (1986) Interstitial cells of the heart valves possess characteristics similar to smooth muscle cells. Circ Res 59:310–320

    PubMed  CAS  Google Scholar 

  • Franke WW, Cowin P, Grund C, Kuhn C, Kapprell H (1988) The endothelial junction. The plaque and its components. In: Simionescu N, Simionescu M (eds) Endothelial cell biology in health and disease. Plenum Press, New York, pp 147–166

    Chapter  Google Scholar 

  • Franke WW, Borrmann CM, Grund C, Pieperhoff S (2006) The area composita of adhering junctions connecting heart muscle cells of vertebrates. I. Molecular definition in intercalated disks of cardiomyocytes by immunoelectron microscopy of desmosomal proteins. Eur J Cell Biol 85:69–82

    Article  PubMed  CAS  Google Scholar 

  • Franke WW, Rickelt S, Barth M, Pieperhoff S (2009) The junctions that don't fit the scheme: special symmetrical cell–cell junctions of their own kind. Cell Tissue Res 338:1–17

    Article  PubMed  Google Scholar 

  • Gerull B, Heuser A, Wichter T, Paul M, Basson CT, McDermott DA, Lerman BB, Markowitz SM, Ellinor PT, MacRae CA, Peters S, Grossmann KS, Drenckhahn J, Michely B, Sasse-Klaassen S, Birchmeier W, Dietz R, Breithardt G, Schulze-Bahr E, Thierfelder L (2004) Mutations in the desmosomal protein plakophilin-2 are common in arrhythmogenic right ventricular cardiomyopathy. Nat Genet 36:1162–1164

    Article  PubMed  CAS  Google Scholar 

  • Gitler AD, Lu MM, Jiang YQ, Epstein JA, Gruber PJ (2003) Molecular markers of cardiac endocardial cushion development. Dev Dyn 228:643–650

    Article  PubMed  CAS  Google Scholar 

  • Gould RA, Butcher JT (2010) Isolation of valvular endothelial cells. J Vis Exp 46:pii:2158

    Google Scholar 

  • Grossmann KS, Grund C, Huelsken J, Behrend M, Erdmann B, Franke WW, Birchmeier W (2004) Requirement of plakophilin 2 for heart morphogenesis and cardiac junction formation. J Cell Biol 167:149–160

    Article  PubMed  CAS  Google Scholar 

  • Hinton RB, Yutzey KE (2011) Heart valve structure and function in development and disease. Annu Rev Physiol 73:29–46

    Article  PubMed  CAS  Google Scholar 

  • Hoerstrup SP, Zund G, Lachat M, Schoeberlein A, Uhlschmid G, Vogt P, Turina M (1998) Tissue engineering: a new approach in cardiovascular surgery—seeding of human fibroblasts on resorbable mesh. Swiss Surg Suppl 2:23–25

    Google Scholar 

  • Hoerstrup SP, Sodian R, Daebritz S, Wang J, Bacha EA, Martin DP, Moran AM, Guleserian KJ, Sperling JS, Kaushal S, Vacanti JP, Schoen FJ, Mayer JE Jr (2000) Functional living trileaflet heart valves grown in vitro. Circulation 102:III44–III49

    PubMed  CAS  Google Scholar 

  • Hurlstone AF, Haramis AP, Wienholds E, Begthel H, Korving J, Van Eeden F, Cuppen E, Zivkovic D, Plasterk RH, Clevers H (2003) The Wnt/beta-catenin pathway regulates cardiac valve formation. Nature 425:633–637

    Article  PubMed  CAS  Google Scholar 

  • Icardo JM, Colvee E (1995a) Atrioventricular valves of the mouse: II. Light and transmission electron microscopy. Anat Rec 241:391–400

    Article  PubMed  CAS  Google Scholar 

  • Icardo JM, Colvee E (1995b) Atrioventricular valves of the mouse: III. Collagenous skeleton and myotendinous junction. Anat Rec 243:367–375

    Article  PubMed  CAS  Google Scholar 

  • Kleinman HK, Martin GR (2005) Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15:378–386

    Article  PubMed  CAS  Google Scholar 

  • Ku CH, Johnson PH, Batten P, Sarathchandra P, Chambers RC, Taylor PM, Yacoub MH, Chester AH (2006) Collagen synthesis by mesenchymal stem cells and aortic valve interstitial cells in response to mechanical stretch. Cardiovasc Res 71:548–556

    Article  PubMed  CAS  Google Scholar 

  • Kuehnel W (1966a) Electron microscopic studies on the variable structure of the heart valves. I. Mitral and aortic valves. Z Zellforsch Mikrosk Anat 69:452–473

    Article  Google Scholar 

  • Kuehnel W (1966b) Electronmicroscopic studies on the different structure of heart valves. II. Tricuspid and pulmonary valve. Z Zellforsch Mikrosk Anat 72:462–474

    Article  Google Scholar 

  • Latif N, Sarathchandra P, Taylor PM, Antoniw J, Yacoub MH (2005a) Localization and pattern of expression of extracellular matrix components in human heart valves. J Heart Valve Dis 14:218–227

    PubMed  Google Scholar 

  • Latif N, Sarathchandra P, Taylor PM, Antoniw J, Yacoub MH (2005b) Molecules mediating cell–ECM and cell–cell communication in human heart valves. Cell Biochem Biophys 43:275–287

    Article  PubMed  CAS  Google Scholar 

  • Latif N, Sarathchandra P, Taylor PM, Antoniw J, Brand N, Yacoub MH (2006) Characterization of molecules mediating cell–cell communication in human cardiac valve interstitial cells. Cell Biochem Biophys 45:255–264

    Article  PubMed  CAS  Google Scholar 

  • Latif N, Sarathchandra P, Thomas PS, Antoniw J, Batten P, Chester AH, Taylor PM, Yacoub MH (2007) Characterization of structural and signaling molecules by human valve interstitial cells and comparison to human mesenchymal stem cells. J Heart Valve Dis 16:56–66

    PubMed  Google Scholar 

  • Lester W, Rosenthal A, Granton B, Gotlieb AI (1988) Porcine mitral valve interstitial cells in culture. Lab Invest 59:710–719

    PubMed  CAS  Google Scholar 

  • Lester WM, Damji AA, Tanaka M, Gedeon I (1992) Bovine mitral valve organ culture: role of interstitial cells in repair of valvular injury. J Mol Cell Cardiol 24:43–53

    Article  PubMed  CAS  Google Scholar 

  • Lichtenberg A, Breymann T, Cebotari S, Haverich A (2006a) Cell seeded tissue engineered cardiac valves based on allograft and xenograft scaffolds. Prog Pediatr Cardiol 21:211–217

    Article  Google Scholar 

  • Lichtenberg A, Tudorache I, Cebotari S, Ringes-Lichtenberg S, Sturz G, Hoeffler K, Hurscheler C, Brandes G, Hilfiker A, Haverich A (2006b) In vitro re-endothelialization of detergent decellularized heart valves under simulated physiological dynamic conditions. Biomaterials 27:4221–4229

    Article  PubMed  CAS  Google Scholar 

  • Lichtenberg A, Tudorache I, Cebotari S, Suprunov M, Tudorache G, Goerler H, Park JK, Hilfiker-Kleiner D, Ringes-Lichtenberg S, Karck M, Brandes G, Hilfiker A, Haverich A (2006c) Preclinical testing of tissue-engineered heart valves re-endothelialized under simulated physiological conditions. Circulation 114:I559–I565

    Article  PubMed  Google Scholar 

  • Lie JT (1989) The identity and histogenesis of cardiac myxomas. A controversy put to rest. Arch Pathol Lab Med 113:724–726

    PubMed  CAS  Google Scholar 

  • Liu AC, Gotlieb AI (2007) Characterization of cell motility in single heart valve interstitial cells in vitro. Histol Histopathol 22:873–882

    PubMed  CAS  Google Scholar 

  • Liu AC, Joag VR, Gotlieb AI (2007) The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology. Am J Pathol 171:1407–1418

    Article  PubMed  CAS  Google Scholar 

  • Markwald RR, Fitzharris TP, Manasek FJ (1977) Structural development of endocardial cushions. Am J Anat 148:85–119

    Article  PubMed  CAS  Google Scholar 

  • Mendelson K, Schoen FJ (2006) Heart valve tissue engineering: concepts, approaches, progress, and challenges. Ann Biomed Eng 34:1799–1819

    Article  PubMed  Google Scholar 

  • Mertens C, Kuhn C, Franke WW (1996) Plakophilins 2a and 2b: constitutive proteins of dual location in the karyoplasm and the desmosomal plaque. J Cell Biol 135:1009–1025

    Article  PubMed  CAS  Google Scholar 

  • Mertens C, Kuhn C, Moll R, Schwetlick I, Franke WW (1999) Desmosomal plakophilin 2 as a differentiation marker in normal and malignant tissues. Differentiation 64:277–290

    Article  PubMed  CAS  Google Scholar 

  • Messier RH Jr, Bass BL, Aly HM, Jones JL, Domkowski PW, Wallace RB, Hopkins RA (1994) Dual structural and functional phenotypes of the porcine aortic valve interstitial population: characteristics of the leaflet myofibroblast. J Surg Res 57:1–21

    Article  PubMed  Google Scholar 

  • Moll R, Holzhausen HJ, Mennel HD, Kuhn C, Baumann R, Taege C, Franke WW (2006) The cardiac isoform of alpha-actin in regenerating and atrophic skeletal muscle, myopathies and rhabdomyomatous tumors: an immunohistochemical study using monoclonal antibodies. Virchows Arch 449:175–191

    Article  PubMed  CAS  Google Scholar 

  • Moll R, Sievers E, Haemmerling B, Schmidt A, Barth M, Kuhn C, Grund C, Hofmann I, Franke WW (2009) Endothelial and virgultar cell formations in the mammalian lymph node sinus: endothelial differentiation morphotypes characterized by a special kind of junction (complexus adhaerens). Cell Tissue Res 335:109–141

    Article  PubMed  CAS  Google Scholar 

  • Mulholland DL, Gotlieb AI (1996) Cell biology of valvular interstitial cells. Can J Cardiol 12:231–236

    PubMed  CAS  Google Scholar 

  • Norgett EE, Hatsell SJ, Carvajal-Huerta L, Cabezas JC, Common J, Purkis PE, Whittock N, Leigh IM, Stevens HP, Kelsell DP (2000) Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum Mol Genet 9:2761–2766

    Article  PubMed  CAS  Google Scholar 

  • O'Brien MF, Goldstein S, Walsh S, Black KS, Elkins R, Clarke D (1999) The SynerGraft valve: a new acellular (nonglutaraldehyde-fixed) tissue heart valve for autologous recellularization first experimental studies before clinical implantation. Semin Thorac Cardiovasc Surg 11:194–200

    PubMed  Google Scholar 

  • Orlandi A, Ciucci A, Ferlosio A, Genta R, Spagnoli LG, Gabbiani G (2006) Cardiac myxoma cells exhibit embryonic endocardial stem cell features. J Pathol 209:231–239

    Article  PubMed  CAS  Google Scholar 

  • Paruchuri S, Yang JH, Aikawa E, Melero-Martin JM, Khan ZA, Loukogeorgakis S, Schoen FJ, Bischoff J (2006) Human pulmonary valve progenitor cells exhibit endothelial/mesenchymal plasticity in response to vascular endothelial growth factor-A and transforming growth factor-beta2. Circ Res 99:861–869

    Article  PubMed  CAS  Google Scholar 

  • Person AD, Klewer SE, Runyan RB (2005) Cell biology of cardiac cushion development. Int Rev Cytol 243:287–335

    Article  PubMed  CAS  Google Scholar 

  • Pho M, Lee W, Watt DR, Laschinger C, Simmons CA, McCulloch CA (2008) Cofilin is a marker of myofibroblast differentiation in cells from porcine aortic cardiac valves. Am J Physiol Heart Circ Physiol 294:H1767–H1778

    Article  PubMed  CAS  Google Scholar 

  • Pieperhoff S, Franke WW (2008) The area composita of adhering junctions connecting heart muscle cells of vertebrates. VI. Different precursor structures in non-mammalian species. Eur J Cell Biol 87:413–430

    Article  PubMed  CAS  Google Scholar 

  • Pieperhoff S, Schumacher H, Franke WW (2008) The area composita of adhering junctions connecting heart muscle cells of vertebrates. V. The importance of plakophilin-2 demonstrated by small interference RNA-mediated knockdown in cultured rat cardiomyocytes. Eur J Cell Biol 87:399–411

    Article  PubMed  CAS  Google Scholar 

  • Pieperhoff S, Barth M, Rickelt S, Franke WW (2010) Desmosomal molecules in and out of adhering junctions: normal and diseased states of epidermal, cardiac and mesenchymally derived cells. Dermatol Res Pract 2010 (Article 139167)

  • Pieperhoff S, Rickelt S, Heid H, Claycomb WC, Zimbelmann R, Kuhn C, Winter-Simanowski S, Frey N, Franke WW (2011) The plaque protein myozap identified as a novel major component of adhering junctions in endothelia of the blood and the lymph vascular systems. J Cell Mol Med Oct 13 [Epub ahead of print]

    Google Scholar 

  • Porter KE, Turner NA (2009) Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther 123:255–278

    Article  PubMed  CAS  Google Scholar 

  • Posner BI, Laporte SA (2010) Cellular signalling: Peptide hormones and growth factors. Prog Brain Res 181:1–16

    Article  PubMed  CAS  Google Scholar 

  • Rampazzo A, Nava A, Malacrida S, Beffagna G, Bauce B, Rossi V, Zimbello R, Simionati B, Basso C, Thiene G, Towbin JA, Danieli GA (2002) Mutation in human desmoplakin domain binding to plakoglobin causes a dominant form of arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet 71:1200–1206

    Article  PubMed  CAS  Google Scholar 

  • Rickelt S, Winter-Simanowski S, Noffz E, Kuhn C, Franke WW (2009) Upregulation of plakophilin-2 and its acquisition to adherens junctions identifies a novel molecular ensemble of cell–cell-attachment characteristic for transformed mesenchymal cells. Int J Cancer 125:2036–2048

    Article  PubMed  CAS  Google Scholar 

  • Rickelt S, Rizzo S, Doerflinger Y, Zentgraf H, Basso C, Gerosa G, Thiene G, Moll R, Franke WW (2010) A novel kind of tumor type-characteristic junction: plakophilin-2 as a major protein of adherens junctions in cardiac myxomata. Mod Pathol 23:1429–1437

    Article  PubMed  CAS  Google Scholar 

  • Rickelt S, Moll I, Franke WW (2011) Intercellular adhering junctions with an asymmetric molecular composition: desmosomes connecting Merkel cells and keratinocytes. Cell Tissue Res 346:65–77

    Article  PubMed  CAS  Google Scholar 

  • Sales VL, Mettler BA, Engelmayr GC Jr, Aikawa E, Bischoff J, Martin DP, Exarhopoulos A, Moses MA, Schoen FJ, Sacks MS, Mayer JE Jr (2010) Endothelial progenitor cells as a sole source for ex vivo seeding of tissue-engineered heart valves. Tissue Eng Part A 16:257–267

    Article  PubMed  CAS  Google Scholar 

  • Schenke-Layland K, Riemann I, Opitz F, Konig K, Halbhuber KJ, Stock UA (2004) Comparative study of cellular and extracellular matrix composition of native and tissue engineered heart valves. Matrix Biol 23:113–125

    Article  PubMed  CAS  Google Scholar 

  • Schoen FJ (2008) Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology, and tissue engineering. Circulation 118:1864–1880

    Article  PubMed  Google Scholar 

  • Schroeder JA, Jackson LF, Lee DC, Camenisch TD (2003) Form and function of developing heart valves: coordination by extracellular matrix and growth factor signaling. J Mol Med 81:392–403

    Article  PubMed  CAS  Google Scholar 

  • Shinoka T, Breuer CK, Tanel RE, Zund G, Miura T, Ma PX, Langer R, Vacanti JP, Mayer JE Jr (1995) Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann Thorac Surg 60:S513–S516

    Article  PubMed  CAS  Google Scholar 

  • Simon P, Kasimir MT, Seebacher G, Weigel G, Ullrich R, Salzer-Muhar U, Rieder E, Wolner E (2003) Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients. Eur J Cardiothorac Surg 23:1002–1006, discussion 1006

    Article  PubMed  CAS  Google Scholar 

  • Sodian R, Hoerstrup SP, Sperling JS, Daebritz S, Martin DP, Moran AM, Kim BS, Schoen FJ, Vacanti JP, Mayer JE Jr (2000a) Early in vivo experience with tissue-engineered trileaflet heart valves. Circulation 102:III22–III29

    PubMed  CAS  Google Scholar 

  • Sodian R, Hoerstrup SP, Sperling JS, Daebritz SH, Martin DP, Schoen FJ, Vacanti JP, Mayer JE Jr (2000b) Tissue engineering of heart valves: in vitro experiences. Ann Thorac Surg 70:140–144

    Article  PubMed  CAS  Google Scholar 

  • Souders CA, Bowers SL, Baudino TA (2009) Cardiac fibroblast: the renaissance cell. Circ Res 105:1164–1176

    Article  PubMed  CAS  Google Scholar 

  • Taylor PM, Allen SP, Dreger SA, Yacoub MH (2002) Human cardiac valve interstitial cells in collagen sponge: a biological three-dimensional matrix for tissue engineering. J Heart Valve Dis 11:298–306, discussion 306-297

    PubMed  Google Scholar 

  • Taylor PM, Batten P, Brand NJ, Thomas PS, Yacoub MH (2003) The cardiac valve interstitial cell. Int J Biochem Cell Biol 35:113–118

    Article  PubMed  CAS  Google Scholar 

  • Trinh LA, Stainier DY (2004) Cardiac development. Methods Cell Biol 76:455–473

    Article  PubMed  CAS  Google Scholar 

  • van Tintelen JP, Entius MM, Bhuiyan ZA, Jongbloed R, Wiesfeld AC, Wilde AA, van der Smagt J, Boven LG, Mannens MM, van Langen IM, Hofstra RM, Otterspoor LC, Doevendans PA, Rodriguez LM, van Gelder IC, Hauer RN (2006) Plakophilin-2 mutations are the major determinant of familial arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circulation 113:1650–1658

    Article  PubMed  Google Scholar 

  • Visconti RP, Ebihara Y, LaRue AC, Fleming PA, McQuinn TC, Masuya M, Minamiguchi H, Markwald RR, Ogawa M, Drake CJ (2006) An in vivo analysis of hematopoietic stem cell potential: hematopoietic origin of cardiac valve interstitial cells. Circ Res 98:690–696

    Article  PubMed  CAS  Google Scholar 

  • Wuchter P, Boda-Heggemann J, Straub BK, Grund C, Kuhn C, Krause U, Seckinger A, Peitsch WK, Spring H, Ho AD, Franke WW (2007) Processus and recessus adhaerentes: giant adherens cell junction systems connect and attract human mesenchymal stem cells. Cell Tissue Res 328:499–514

    Article  PubMed  Google Scholar 

  • Yperman J, De Visscher G, Holvoet P, Flameng W (2004) Molecular and functional characterization of ovine cardiac valve-derived interstitial cells in primary isolates and cultures. Tissue Eng 10:1368–1375

    PubMed  CAS  Google Scholar 

  • Zund G, Hoerstrup SP, Schoeberlein A, Lachat M, Uhlschmid G, Vogt PR, Turina M (1998) Tissue engineering: a new approach in cardiovascular surgery: Seeding of human fibroblasts followed by human endothelial cells on resorbable mesh. Eur J Cardiothorac Surg 13:160–164

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Some parts of the present report are from the PhD thesis of Mareike Barth (2011). The work was supported in parts by the German Cancer Foundation (Deutsche Krebshilfe, grants 10-2049-Fr1 and 106976 to WWF) and the Federal Ministry for Research and Technology (START-MSC; grant 01GN0942).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Wilhelm Franke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barth, M., Rickelt, S., Noffz, E. et al. The adhering junctions of valvular interstitial cells: molecular composition in fetal and adult hearts and the comings and goings of plakophilin-2 in situ, in cell culture and upon re-association with scaffolds. Cell Tissue Res 348, 295–307 (2012). https://doi.org/10.1007/s00441-011-1315-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-011-1315-2

Keywords

Navigation