Skip to main content

Advertisement

Log in

Defining the morphological phenotype: 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) is a novel marker for in situ detection of canine but not rat olfactory ensheathing cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Olfactory ensheathing cells (OECs) are the non-myelinating glial cells of the olfactory nerves and bulb. The fragmentary characterization of OECs in situ during normal development may be due to their small size requiring intricate ultrastructural analysis and to the fact that available markers for in situ detection are either expressed only by OEC subpopulations or lost during development. In the present study, we searched for markers with stable expression in OECs and investigated the spatiotemporal distribution of CNPase, an early oligodendrocyte/Schwann cell marker, in comparison with the prototype marker p75NTR. Anti-CNPase antibodies labeled canine but not rat OECs in situ, while Schwann cells and oligodendrocytes were positive in both species. CNPase immunoreactivity in the dog was confined to all OECs throughout the postnatal development and associated with the entire cell body, including its finest processes, while p75NTR was mainly detected in perineural cells and only in some neonatal OECs. Adult olfactory bulb slices displayed CNPase expression after 4 and 10 days, while p75NTR was detectable only after 10 days in vitro. Finally, treatment of purified adult canine OECs with fibroblast growth factor-2 significantly reduced CNPase expression at the protein and mRNA level. Taken together, we conclude that CNPase but not p75NTR is a stable marker suitable for in situ visualization of OECs that will facilitate their light-microscopic characterization and challenge our general view of OEC marker expression in situ. The fact that canine but not rat OECs expressed CNPase supports the idea that glia from large animals differs substantially from rodents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alexander CL, Fitzgerald UF, Barnett SC (2002) Identification of growth factors that promote long-term proliferation of olfactory ensheathing cells and modulate their antigenic phenotype. Glia 37:349–364

    Article  PubMed  Google Scholar 

  • Au E, Roskams AJ (2002) Culturing olfactory ensheathing glia from the mouse olfactory epithelium. Methods Mol Biol 198:49–54

    PubMed  Google Scholar 

  • Barnett SC, Chang L (2004) Olfactory ensheathing cells and CNS repair: going solo or in need of a friend? Trends Neurosci 27:54–60

    Article  PubMed  CAS  Google Scholar 

  • Berger T, Frotscher M (1994) Distribution and morphological characteristics of oligodendrocytes in the rat hippocampus in situ and in vitro: an immunocytochemical study with the monoclonal Rip antibody. J Neurocytol 23:61–74

    Article  PubMed  CAS  Google Scholar 

  • Bianco JI, Perry C, Harkin DG, Mackay-Sim A, Féron F (2004) Neurotrophin-3 promotes proliferation of olfactory ensheathing cells from human nose. Glia 45:111–123

    Article  PubMed  Google Scholar 

  • Bock P, Beineke A, Techangamsuwan S, Baumgärtner W, Wewetzer K (2007) Differential expression of HNK-1 and p75NTR in adult canine Schwann cells and olfactory ensheathing cells in situ but not in vitro. J Comp Neurol 505:572–585

    Article  PubMed  Google Scholar 

  • Bock P, Rohn K, Beineke A, Baumgärtner W, Wewetzer K (2009) Site-specific population dynamics and variable olfactory marker protein expression in the postnatal canine olfactory epithelium. J Anat 215:522–535

    Article  PubMed  CAS  Google Scholar 

  • Boyd JG, Skihar V, Kawaja M, Doucette R (2003) Olfactory ensheathing cells: historical perspective and therapeutic potential. Anat Rec B New Anat 271:49–60

    Article  PubMed  CAS  Google Scholar 

  • Chuah MI, West AK (2002) Cellular and molecular biology of ensheathing cells. Microsc Res Tech 58:216–227

    Article  PubMed  CAS  Google Scholar 

  • Dulac C, Le Douarin NM (1991) Phenotypic plasticity of Schwann cells and enteric glial cells in response to the microenvironment. Proc Natl Acad Sci USA 88:6358–6362

    Article  PubMed  CAS  Google Scholar 

  • Field P, Li Y, Raisman G (2003) Ensheathment of the olfactory nerves in the adult rat. J Neurocytol 32:317–324

    Article  PubMed  Google Scholar 

  • Franceschini IA, Barnett SC (1996) Low-affinity NGF-receptor and E-N-CAM expression define two types of olfactory nerve ensheathing cells that share a common lineage. Dev Biol 173:327–343

    Article  PubMed  CAS  Google Scholar 

  • Friedman B, Hockfield S, Black JA, Woodruff KA, Waxman SG (1989) In situ demonstration of mature oligodendrocytes and their processes: an immunocytochemical study with a new monoclonal antibody, rip. Glia 2:380–390

    Article  PubMed  CAS  Google Scholar 

  • Georgiou J, Charlton MP (1999) Non-myelin-forming perisynaptic Schwann cells express protein zero and myelin-associated glycoprotein. Glia 27:101–109

    Article  PubMed  CAS  Google Scholar 

  • Gerhauser I, Alldinger S, Ulrich R, Baumgärtner W (2005) Spatio-temporal expression of immediate early genes in the central nervous system of SJL/J mice. Int J Dev Neurosci 23:637–649

    Article  PubMed  CAS  Google Scholar 

  • Gong Q, Bailey MS, Pixley SK, Ennis M, Liu W, Shipley MT (1994) Localization and regulation of low affinity nerve growth factor receptor expression in the rat olfactory system during development and regeneration. J Comp Neurol 344:336–348

    Article  PubMed  CAS  Google Scholar 

  • Haastert K, Seef P, Stein VM, Tipold A, Grothe C (2009) A new cell culture protocol for enrichment and genetic modification of adult canine Schwann cells suitable for peripheral nerve tissue engineering. Res Vet Sci 87:140–142

    Article  PubMed  CAS  Google Scholar 

  • Heimrich B, Frotscher M (1993) Slice cultures as a model to study entorhinal-hippocampal interaction. Hippocampus 3 Spec No.11-17

  • Jeffery ND, Lakatos A, Franklin RJ (2005) Autologous olfactory glial cell transplantation is reliable and safe in naturally occurring canine spinal cord injury. J Neurotrauma 22:1282–1293

    Article  PubMed  Google Scholar 

  • Jeffery ND, Smith PM, Lakatos A, Ibanez C, Ito D, Franklin RJ (2006) Clinical canine spinal cord injury provides an opportunity to examine the issues in translating laboratory techniques into practical therapy. Spinal Cord 44:584–593

    Article  PubMed  CAS  Google Scholar 

  • Jessen KR, Mirsky R (2002) Signals that determine Schwann cell identity. J Anat 200:367–376

    Article  PubMed  CAS  Google Scholar 

  • Jessen KR, Mirsky R (2005) The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 6:671–682

    Article  PubMed  CAS  Google Scholar 

  • Jessen KR, Morgan L, Stewart HJ, Mirsky R (1990) Three markers of adult non-myelin-forming Schwann cells, 217c(Ran-1), A5E3 and GFAP: development and regulation by neuron-Schwann cell interactions. Development 109:91–103

    PubMed  CAS  Google Scholar 

  • Jhaveri S, Erzurumlu RS, Friedman B, Schneider GE (1992) Oligodendrocytes and myelin formation along the optic tract of the developing hamster: an immunohistochemical study using the Rip antibody. Glia 6:138–148

    Article  PubMed  CAS  Google Scholar 

  • Kreutzer R, Kreutzer M, Pröpsting MJ, Sewell AC, Leeb T, Naim HY, Baumgärtner W (2008) Insights into post-translational processing of β-galactosidase in an animal model resembling late infantile human G-gangliosidosis. J Cell Mol Med 12:1661–1671

    Article  PubMed  CAS  Google Scholar 

  • Kreutzer R, Kreutzer M, Sewell AC, Techangamsuwan S, Leeb T, Baumgärtner W (2009) Impact of β-galactosidase mutations on the expression of the canine lysosomal multienzyme complex. Biochim Biophys Acta 1792:982–987

    PubMed  CAS  Google Scholar 

  • Krudewig C, Deschl U, Wewetzer K (2006) Purification and in vitro characterization of adult canine olfactory ensheathing cells. Cell Tissue Res 326:687–696

    Article  PubMed  CAS  Google Scholar 

  • Kummerfeld M, Meens J, Haas L, Baumgärtner W, Beineke A (2009) Generation and characterization of a polyclonal antibody for the detection of Theiler’s murine encephalomyelitis virus by light and electron microscopy. J Virol Methods 160:185–188

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Gravel M, Zhang R, Thibault P, Braun PE (2005) Process outgrowth in oligodendrocytes is mediated by CNP, a novel microtubule assembly myelin protein. J Cell Biol 170:661–673

    Article  PubMed  CAS  Google Scholar 

  • Lee M, Brennan A, Blanchard A, Zoidl G, Dong Z, Tabernero A, Zoidl C, Dent MA, Jessen KR, Mirsky R (1997) P0 is constitutively expressed in the rat neural crest and embryonic nerves and is negatively and positively regulated by axons to generate non-myelin-forming and myelin-forming Schwann cells, respectively. Mol Cell Neurosci 8:336–350

    Article  PubMed  CAS  Google Scholar 

  • Lee MJ, Calle E, Brennan A, Ahmed S, Sviderskaya E, Jessen KR, Mirsky R (2001) In early development of the rat mRNA for the major myelin protein P(0) is expressed in nonsensory areas of the embryonic inner ear, notochord, enteric nervous system, and olfactory ensheathing cells. Dev Dyn 222:40–51

    Article  PubMed  CAS  Google Scholar 

  • Lim JH, Brunjes PC (1999) Activity-dependent regulation of interleukin-1 β immunoreactivity in the developing rat olfactory bulb. Neuroscience 93:371–374

    Article  PubMed  CAS  Google Scholar 

  • Meinecke DL, Rakic P (1993) Low-affinity p75 nerve growth factor receptor expression in the embryonic monkey telencephalon: timing and localization in diverse cellular elements. Neuroscience 54:105–116

    Article  PubMed  CAS  Google Scholar 

  • Mirsky R, Jessen KR (1999) The neurobiology of Schwann cells. Brain Pathol 9:293–311

    Article  PubMed  CAS  Google Scholar 

  • Mirsky R, Jessen KR, Brennan A, Parkinson D, Dong Z, Meier C, Parmantier E, Lawson D (2002) Schwann cells as regulators of nerve development. J Physiol Paris 96:17–24

    Article  PubMed  CAS  Google Scholar 

  • Pringproa K, Kumnok J, Ulrich R, Baumgärtner W, Wewetzer K (2008) In vitro characterization of a murine oligodendrocyte precursor cell line (BO-1) following spontaneous immortalization. Int J Dev Neurosci 26:283–291

    Article  PubMed  CAS  Google Scholar 

  • Radtke C, Wewetzer K (2009) Translating basic research into clinical practice or what else do we have to learn about olfactory ensheathing cells? Neurosci Lett 456:133–136

    Article  PubMed  CAS  Google Scholar 

  • Radtke C, Wewetzer K, Reimers K, Vogt PM (2010) Transplantation of olfactory ensheathing cells as adjunct cell-therapy for peripheral nerve injury. Cell Transplant, Aug 18. Epub ahead of print

  • Raisman G (1985) Specialized neuroglial arrangement may explain the capacity of vomeronasal axons to reinnervate central neurons. Neuroscience 14:237–254

    Article  PubMed  CAS  Google Scholar 

  • Ramón-Cueto A, Avila J (1998) Olfactory ensheathing glia: properties and function. Brain Res Bull 46:175–187

    Article  PubMed  Google Scholar 

  • Ramón-Cueto A, Nieto-Sampedro M (1992) Glial cells from adult rat olfactory bulb: immunocytochemical properties of pure cultures of ensheathing cells. Neuroscience 47:213–220

    Article  PubMed  Google Scholar 

  • Ramón-Cueto A, Muñoz-Quiles C (2010) Clinical application of adult olfactory bulb ensheathing glia for nervous system repair. Exp Neurol, Oct 12. Epub ahead of print

  • Rasband MN, Tayler J, Kaga Y, Yang Y, Lappe-Siefke C, Nave KA, Bansal R (2005) CNP is required for maintenance of axon-glia interactions at nodes of Ranvier in the CNS. Glia 50:86–90

    Article  PubMed  Google Scholar 

  • Rojas-Mayorquín AE, Torres-Ruíz NM, Gudiño-Cabrera G, Ortuño-Sahagún D (2010) Subtractive hybridization identifies genes differentially expressed by olfactory ensheathing cells and neural stem cells. Int J Dev Neurosci 28:75–82

    Article  PubMed  Google Scholar 

  • Rubio MP, Muñoz-Quiles C, Ramón-Cueto A (2008) Adult olfactory bulbs from primates provide reliable ensheathing glia for cell therapy. Glia 56:539–551

    Article  PubMed  Google Scholar 

  • Santos-Silva A, Cavalcante LA (2001) Expression of the non-compact myelin protein 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) in olfactory bulb ensheathing glia from explant cultures. Neurosci Res 40:189–193

    Article  PubMed  CAS  Google Scholar 

  • Sieber-Blum M (2010) Epidermal neural crest stem cells and their use in mouse models of spinal cord injury. Brain Res Bull 83:189–193

    Article  PubMed  CAS  Google Scholar 

  • Smith PM, Lakatos A, Barnett SC, Jeffery ND, Franklin RJ (2002) Cryopreserved cells isolated from the adult canine olfactory bulb are capable of extensive remyelination following transplantation into the adult rat CNS. Exp Neurol 176:402–406

    Article  PubMed  CAS  Google Scholar 

  • Smithson LJ, Kawaja MD (2010) Microglial/macrophage cells in mammalian olfactory nerve fascicles. J Neurosci Res 88:858–865

    PubMed  CAS  Google Scholar 

  • Stoppini L, Buchs PA, Muller D (1991) A simple method for organoptypic cultures of nervous tissue. J Neurosci Methods 37:172–182

    Article  Google Scholar 

  • Techangamsuwan S, Imbschweiler I, Kreutzer R, Kreutzer M, Baumgärtner W, Wewetzer K (2008) Similar behaviour and primate-like properties of adult canine Schwann cells and olfactory ensheathing cells in long-term culture. Brain Res 1240:31–38

    Article  PubMed  CAS  Google Scholar 

  • Techangamsuwan S, Kreutzer R, Kreutzer M, Imbschweiler I, Rohn K, Wewetzer K, Baumgärtner W (2009) Transfection of adult canine Schwann cells and olfactory ensheathing cells at early and late passage with human TERT differentially affects growth factor responsiveness and in vitro growth. J Neurosci Methods 176:112–120

    Article  PubMed  CAS  Google Scholar 

  • Tisay KT, Bartlett PF, Key B (2000) Primary olfactory axons form ectopic glomeruli in mice lacking p75NTR. J Comp Neurol 428:656–670

    Article  PubMed  CAS  Google Scholar 

  • Toma JS, McPhail LT, Ramer MS (2007) Differential RIP antigen (CNPase) expression in peripheral ensheathing glia. Brain Res 1137:1–10

    Article  PubMed  CAS  Google Scholar 

  • Turner CP, Perez-Polo JR (1993) Expression of p75NTR NGFR in the olfactory system following peripheral deafferentation. Neuroreport 4:1023–1026

    Article  PubMed  CAS  Google Scholar 

  • Turner CP, Perez-Polo JR (1994) Changes in expression of the low affinity receptor for neurotrophins, p75NGFR, in the regenerating olfactory system. Int J Dev Neurosci 12:767–773

    Article  PubMed  CAS  Google Scholar 

  • Ulrich R, Baumgärtner W, Gerhauser I, Seeliger F, Haist V, Deschl U, Alldinger S (2006) MMP-12, MMP-3, and TIMP-1 are markedly upregulated in chronic demyelinating theiler murine encephalomyelitis. J Neuropathol Exp Neurol 65:783–793

    Article  PubMed  CAS  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034

    Google Scholar 

  • Vickland H, Westrum LE, Kott JN, Patterson SL, Bothwell MA (1991) Nerve growth factor receptor expression in the young and adult rat olfactory system. Brain Res 565:269–279

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Sakurai Y, Ichinose T, Aikawa Y, Kotani M, Itoh K (2006) Monoclonal antibody Rip specifically recognizes 2′,3′-cyclic nucleotide 3′-phosphodiesterase in oligodendrocytes. J Neurosci Res 84:525–533

    Article  PubMed  CAS  Google Scholar 

  • Wewetzer K, Brandes G (2006) Axonal signalling and the making of olfactory ensheathing cells: a hypothesis. Neuron Glia Biol 2:217–224

    Article  PubMed  Google Scholar 

  • Wewetzer K, Grothe C, Claus P (2001) In vitro expression and regulation of ciliary neurotrophic factor and its alpha receptor subunit in neonatal rat olfactory ensheathing cells. Neurosci Lett 306:165–168

    Article  PubMed  CAS  Google Scholar 

  • Wewetzer K, Verdú E, Angelov DN, Navarro X (2002) Olfactory ensheathing glia and Schwann cells: two of a kind? Cell Tissue Res 309:337–345

    Article  PubMed  Google Scholar 

  • Wewetzer K, Kern N, Ebel C, Radtke C, Brandes G (2005) Phagocytosis of O4+ axonal fragments in vitro by p75NTR neonatal olfactory ensheathing cells. Glia 49:577–587

    Article  PubMed  Google Scholar 

  • Wewetzer K, Radtke C, Kocsis J, Baumgärtner W (2010) Species-specific control of cellular proliferation and the impact of large animal models for the use of olfactory ensheathing cells and Schwann cells in spinal cord repair. Exp Neurol, Sept 15. Epub ahead of print

  • Windus LC, Lineburg KE, Scott S, Claxton C, Mackay-Sim A, Key B, St John JA (2010) Lamellipodia mediate the heterogeneity of central olfactory ensheathing cell interactions. Cell Mol Life Sci 67:1735–1750

    Article  PubMed  CAS  Google Scholar 

  • Yin X, Peterson J, Gravel M, Braun PE, Trapp BD (1997) CNP overexpression induces aberrant oligodendrocyte membranes and inhibits MBP accumulation and myelin compaction. J Neurosci Res 50:238–247

    Article  PubMed  CAS  Google Scholar 

  • Zhao MT, Prather RS (2010) The multi-potentiality of skin-derived stem cells in pigs. Theriogenology, Aug 4, Epub ahead of print

Download references

Acknowledgements

This study was supported by a grant to W.B. (BA 815/10-1) from the Deutsche Forschungsgemeinschaft (Research Unit 1103, Project 3). We thank P. Brünig for excellent technical assistance, K. Rohn for help with the statistical analysis, and A. Lehmbecker (Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany) for providing adult rat tissue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Wewetzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omar, M., Bock, P., Kreutzer, R. et al. Defining the morphological phenotype: 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) is a novel marker for in situ detection of canine but not rat olfactory ensheathing cells. Cell Tissue Res 344, 391–405 (2011). https://doi.org/10.1007/s00441-011-1168-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-011-1168-8

Keywords

Navigation