Skip to main content

Advertisement

Log in

Origin and hierarchy of basal lamina-forming and -non-forming myogenic cells in mouse skeletal muscle in relation to adhesive capacity and Pax7 expression in vitro

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

As a novel approach to distinguish skeletal myogenic cell populations, basal lamina (BL) formation of myogenic cells was examined in the mouse compensatory enlarged plantaris muscles in vivo and in fiber-bundle cultures in vitro. MyoD+ myogenic cells located inside the regenerative muscle fiber BL were laminin but interstitial MyoD+ cells were laminin+. This was also confirmed by electron microscopy as structural BL formation. Similar trends were observed in the fiber-bundle cultures including satellite cells and interstitial myogenic cells and laminin+ myogenic cells predominantly showed non-adhesive (non-Ad) behavior with Pax7, whereas laminin cells were adhesive (Ad) with Pax7+. Moreover, non-Ad/laminin+ and Ad/laminin myotubes were also observed and the former type showed spontaneous contractions, while the latter type did not. The origin and hierarchy of Ad/Pax7+/laminin and non-Ad/Pax7/laminin+ myogenic cells were also examined using skeletal muscle interstitium-derived CD34+/45 (Sk-34) and CD34/45 (Sk-DN) multipotent stem cells, which were composed of non-committed myogenic cells with a few (<1%) Pax7+ cells in the Sk-DN cells at fresh isolation. Both cell types were separated by Ad/non-Ad capacity in repetitive culture. As expected, both Ad/Pax7+/laminin and non-Ad/Pax7/laminin+ myogenic cells consistently appeared in the Ad and non-Ad cell culture. However, Ad/Pax7+/laminin cells were repeatedly detected in the non-Ad cell culture, while the opposite phenomenon did not occur. This indicates that the source of non-Ad/ Pax7/laminin+ myogenic cells was present in the Sk-34 and Sk-DN stem cells and they were able to produce Ad/ Pax7+/ laminin myogenic cells during myogenesis as primary myoblasts and situated hierarchically upstream of the latter cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allbrook D (1981) Skeletal muscle regeneration. Muscle Nerve 4:234–245

    Article  PubMed  CAS  Google Scholar 

  • Allen RE, Rankin LL, Greene EA, Boxhorn LK, Johnson SE, Taylor RG, Pierce PR (1991) Desmin is present in proliferating rat muscle satellite cells but not in bovine muscle satellite cells. J Cell Physiol 149:525–535

    Article  PubMed  CAS  Google Scholar 

  • Allen RE, Sheehan SM, Taylor RG, Kendall TL, Rice GM (1995) Hepatocyte growth factor activates quiescent skeletal muscle satellite cells in vitro. J Cell Physiol 165:307–312

    Article  PubMed  CAS  Google Scholar 

  • Allen RE, Temm-Grove CJ, Sheehan SM, Rice G (1997) Skeletal muscle satellite cell cultures. Methods Cell Biol 52:155–176

    Article  PubMed  CAS  Google Scholar 

  • Asakura A, Komaki M, Rudnicki M (2001) Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 68:245–253

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp JR, Heslop L, Yu DS, Tajbakhsh S, Kelly RG, Wernig A, Buckingham ME, Partridge TA, Zammit PS (2000) Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol 151:1221–1234

    Article  PubMed  CAS  Google Scholar 

  • Bianco P, Cossu G (2002) The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development 129:2773–2783

    PubMed  Google Scholar 

  • Bischoff R (1997) Chemotaxis of skeletal muscle satellite cells. Dev Dyn 208:505–515

    Article  PubMed  CAS  Google Scholar 

  • Bischoff R, Heintz C (1994) Enhancement of skeletal muscle regeneration. Dev Dyn 201:41–54

    Article  PubMed  CAS  Google Scholar 

  • Buckingham M (1994) Muscle differentiation. Which myogenic factors make muscle? Curr Biol 4:61–63

    Article  PubMed  CAS  Google Scholar 

  • Buckingham M (2006) Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr Opin Genet Dev 16:525–532

    Article  PubMed  CAS  Google Scholar 

  • Coletti D, Yang E, Marazzi G, Sassoon D (2002) TNFalpha inhibits skeletal myogenesis through a PW1-dependent pathway by recruitment of caspase pathways. EMBO J 21:631–642

    Article  PubMed  CAS  Google Scholar 

  • Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122:289–301

    Article  PubMed  CAS  Google Scholar 

  • Cossu G, Bianco P (2003) Mesoangioblasts–vascular progenitors for extravascular mesodermal tissues. Curr Opin Genet Dev 13:537–542

    Article  PubMed  CAS  Google Scholar 

  • Cossu G, Biressi S (2005) Satellite cells, myoblasts and other occasional myogenic progenitors: possible origin, phenotypic features and role in muscle regeneration. Semin Cell Dev Biol 16:623–631

    Article  PubMed  CAS  Google Scholar 

  • Han R, Kanagawa M, Yoshida-Moriguchi T, Rader EP, Ng RA, Michele DE, Muirhead DE, Kunz S, Moore SA, Iannaccone ST, Miyake K, McNeil PL, Mayer U, Oldstone MB, Faulkner JA, Campbell KP (2009) Basal lamina strengthens cell membrane integrity via the laminin G domain-binding motif of alpha-dystroglycan. Proc Natl Acad Sci USA 106:12573–12579

    Article  PubMed  CAS  Google Scholar 

  • Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91:534–551

    PubMed  CAS  Google Scholar 

  • Henry MD, Satz JS, Brakebusch C, Costell M, Gustafsson E, Fassler R, Campbell KP (2001) Distinct roles for dystroglycan, beta1 integrin and perlecan in cell surface laminin organization. J Cell Sci 114:1137–1144

    PubMed  CAS  Google Scholar 

  • Hikida RS, Staron RS, Hagerman FC, Walsh S, Kaiser E, Shell S, Hervey S (2000) Effects of high-intensity resistance training on untrained older men. II. Muscle fiber characteristics and nucleo-cytoplasmic relationships. J Gerontol A Biol Sci Med Sci 55:B347–354

    PubMed  CAS  Google Scholar 

  • Hughes SM, Blau HM (1990) Migration of myoblasts across basal lamina during skeletal muscle development. Nature 345:350–353

    Article  PubMed  CAS  Google Scholar 

  • Iscove NN, Barbara M, Gu M, Gibson M, Modi C, Winegarden N (2002) Representation is faithfully preserved in global cDNA amplified exponentially from sub-picogram quantities of mRNA. Nat Biotechnol 20:940–943

    Article  PubMed  CAS  Google Scholar 

  • Kuang S, Charge SB, Seale P, Huh M, Rudnicki MA (2006) Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis. J Cell Biol 172:103–113

    Article  PubMed  CAS  Google Scholar 

  • Lee JY, Qu-Petersen Z, Cao B, Kimura S, Jankowski R, Cummins J, Usas A, Gates C, Robbins P, Wernig A, Huard J (2000) Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing. J Cell Biol 150:1085–1100

    Article  PubMed  CAS  Google Scholar 

  • Minasi MG, Riminucci M, De Angelis L, Borello U, Berarducci B, Innocenzi A, Caprioli A, Sirabella D, Baiocchi M, De Maria R, Boratto R, Jaffredo T, Broccoli V, Bianco P, Cossu G (2002) The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development 129:2773–2783

    PubMed  CAS  Google Scholar 

  • Miner JH, Yurchenco PD (2004) Laminin functions in tissue morphogenesis. Annu Rev Cell Dev Biol 20:255–284

    Article  PubMed  CAS  Google Scholar 

  • Mitchell KJ, Pannerec A, Cadot B, Parlakian A, Besson V, Gomes ER, Marazzi G, Sassoon DA (2010) Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development. Nat Cell Biol 12:257–266

    PubMed  CAS  Google Scholar 

  • Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, Partridge T, Buckingham M (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 309:2064–2067

    Article  PubMed  CAS  Google Scholar 

  • Nicolas N, Marazzi G, Kelley K, Sassoon D (2005) Embryonic deregulation of muscle stress signaling pathways leads to altered postnatal stem cell behavior and a failure in postnatal muscle growth. Dev Biol 281:171–183

    Article  PubMed  CAS  Google Scholar 

  • Osawa M, Egawa G, Mak SS, Moriyama M, Freter R, Yonetani S, Beermann F, Nishikawa S (2005) Molecular characterization of melanocyte stem cells in their niche. Development 132:5589–5599

    Article  PubMed  CAS  Google Scholar 

  • Oustanina S, Hause G, Braun T (2004) Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specification. EMBO J 23:3430–3439

    Article  PubMed  CAS  Google Scholar 

  • Qu-Petersen Z, Deasy B, Jankowski R, Ikezawa M, Cummins J, Pruchnic R, Mytinger J, Cao B, Gates C, Wernig A, Huard J (2002) Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol 157:851–864

    Article  PubMed  CAS  Google Scholar 

  • Relaix F, Weng X, Marazzi G, Yang E, Copeland N, Jenkins N, Spence SE, Sassoon D (1996) Pw1, a novel zinc finger gene implicated in the myogenic and neuronal lineages. Dev Biol 177:383–396

    Article  PubMed  CAS  Google Scholar 

  • Romero-Ramos M, Vourc'h P, Young HE, Lucas PA, Wu Y, Chivatakarn O, Zaman R, Dunkelman N, el-Kalay MA, Chesselet MF (2002) Neuronal differentiation of stem cells isolated from adult muscle. J Neurosci Res 69:894–907

    Article  PubMed  CAS  Google Scholar 

  • Rosenblatt JD, Lunt AI, Parry DJ, Partridge TA (1995) Culturing satellite cells from living single muscle fiber explants. In Vitro Cell Dev Biol Anim 31:773–779

    Article  PubMed  CAS  Google Scholar 

  • Schultz E, McCormick KM (1994) Skeletal muscle satellite cells. Rev Physiol Biochem Pharmacol 123:213–257

    Article  PubMed  CAS  Google Scholar 

  • Schwander M, Leu M, Stumm M, Dorchies OM, Ruegg UT, Schittny J, Muller U (2003) Beta1 integrins regulate myoblast fusion and sarcomere assembly. Dev Cell 4:673–685

    Article  PubMed  CAS  Google Scholar 

  • Schwarzkopf M, Coletti D, Sassoon D, Marazzi G (2006) Muscle cachexia is regulated by a p53-PW1/Peg3-dependent pathway. Genes Dev 20:3440–3452

    Article  PubMed  CAS  Google Scholar 

  • Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102:777–786

    Article  PubMed  CAS  Google Scholar 

  • Spradling A, Drummond-Barbosa D, Kai T (2001) Stem cells find their niche. Nature 414:98–104

    Article  PubMed  CAS  Google Scholar 

  • Tamaki T, Sekine T, Akatsuka A, Uchiyama S, Nakano S (1993) Three-dimensional cytoarchitecture of complex branched fibers in soleus muscle from mdx mutant mice. Anat Rec 237:338–344

    Article  PubMed  CAS  Google Scholar 

  • Tamaki T, Akatsuka A (1994) Appearance of complex branched fibers following repetitive muscle trauma in normal rat skeletal muscle. Anat Rec 240:217–224

    Article  PubMed  CAS  Google Scholar 

  • Tamaki T, Uchiyama S (1995) Absolute and relative growth of rat skeletal muscle. Physiol Behav 57:913–919

    Article  PubMed  CAS  Google Scholar 

  • Tamaki T, Akatsuka A, Tokunaga M, Uchiyama S, Shiraishi T (1996) Characteristics of compensatory hypertrophied muscle in the rat: I. Electron microscopic and immunohistochemical studies. Anat Rec 246:325–334

    Article  PubMed  CAS  Google Scholar 

  • Tamaki T, Akatsuka A, Uchiyama S, Uchiyama Y, Shiraishi T (1997) Appearance of complex branched muscle fibers is associated with a shift to slow muscle characteristics. Acta Anat Basel 159:108–113

    Article  PubMed  CAS  Google Scholar 

  • Tamaki T, Akatsuka A, Ando K, Nakamura Y, Matsuzawa H, Hotta T, Roy RR, Edgerton VR (2002a) Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle. J Cell Biol 157:571–577

    Article  PubMed  CAS  Google Scholar 

  • Tamaki T, Akatsuka A, Yoshimura S, Roy RR, Edgerton VR (2002b) New fiber formation in the interstitial spaces of rat skeletal muscle during postnatal growth. J Histochem Cytochem 50:1097–1111

    PubMed  CAS  Google Scholar 

  • Tamaki T, Akatsuka A, Okada Y, Matsuzaki Y, Okano H, Kimura M (2003) Growth and differentiation potential of main- and side-population cells derived from murine skeletal muscle. Exp Cell Res 291:83–90

    Article  PubMed  CAS  Google Scholar 

  • Tamaki T, Okada Y, Uchiyama Y, Tono K, Masuda M, Nitta M, Hoshi A, Akatsuka A (2008) Skeletal muscle-derived CD34+/45- and CD34-/45- stem cells are situated hierarchically upstream of Pax7+ cells. Stem Cells Dev 17:653–667

    Article  PubMed  CAS  Google Scholar 

  • Tamaki T, Uchiyama Y, Okada Y, Tono K, Nitta M, Hoshi A, Akatsuka A (2009a) Anabolic-androgenic steroid does not enhance compensatory muscle hypertrophy but significantly diminish muscle damages in the rat surgical ablation model. Histochem Cell Biol 132:71–81

    Article  PubMed  CAS  Google Scholar 

  • Tamaki T, Uchiyama Y, Okada Y, Tono K, Nitta M, Hoshi A, Akatsuka A (2009b) Multiple stimulations for muscle-nerve-blood vessel unit in compensatory hypertrophied skeletal muscle of rat surgical ablation model. Histochem Cell Biol 132:59–70

    Article  PubMed  CAS  Google Scholar 

  • Tamaki T, Uchiyama Y, Akatsuka A (2010a) Plasticity and physiological role of stem cells derived from skeletal muscle interstitium: contribution to muscle fiber hyperplasia and therapeutic use. Curr Pharm Des 16:956–967

    Article  PubMed  CAS  Google Scholar 

  • Tamaki T, Uchiyama Y, Okada Y, Tono K, Masuda M, Nitta M, Hoshi A, Akatsuka A (2010b) Clonal differentiation of skeletal muscle-derived CD34(-)/45(-) stem cells into cardiomyocytes in vivo. Stem Cells Dev 19:503–512

    Article  PubMed  CAS  Google Scholar 

  • Timpl R, Brown JC (1996) Supramolecular assembly of basement membranes. Bioessays 18:123–132

    Article  PubMed  CAS  Google Scholar 

  • Torrente Y, Tremblay JP, Pisati F, Belicchi M, Rossi B, Sironi M, Fortunato F, El Fahime M, D'Angelo MG, Caron NJ, Constantin G, Paulin D, Scarlato G, Bresolin N (2001) Intraarterial injection of muscle-derived CD34(+)Sca-1(+) stem cells restores dystrophin in mdx mice. J Cell Biol 152:335–348

    Article  PubMed  CAS  Google Scholar 

  • Watt FM, Hogan BL (2000) Out of Eden: stem cells and their niches. Science 287:1427–1430

    Article  PubMed  CAS  Google Scholar 

  • Williams JT, Southerland SS, Souza J, Calcutt AF, Cartledge RG (1999) Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes. Am Surg 65:22–26

    PubMed  CAS  Google Scholar 

  • Young HE, Steele TA, Bray RA, Hudson J, Floyd JA, Hawkins K, Thomas K, Austin T, Edwards C, Cuzzourt J, Duenzl M, Lucas PA, Black AC Jr (2001) Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec 264:51–62

    Article  PubMed  CAS  Google Scholar 

  • Zammit PS, Partridge TA, Yablonka-Reuveni Z (2006) The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem 54:1177–1191

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuro Tamaki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

Characteristics of C2C12 mouse myoblast cell line. C2C12 cells were purchased from RIKEN Cell Bank (Ibaragi, Japan). Double-labeling for MyoD and laminin (a) and myogenin and laminin (b) showed that MyoD+ and/or myogenin+ myogenic cells were adhesive in culture and mostly spindle-shaped but laminin- (a and b). Electron microscopy also indicated no basal lamina structure with a few contractile components in single C2C12 cells (c) and their myotubes (d). These characteristics correspond to the Ad/Pax7+ myogenic cells in Sk-34 and Sk-DN cell cultures (see Figs. 2 and 4). Bars in a and b = 10 μm, c and d = 2 μm (TIFF 3865 kb) (GIF 243 kb)

High resolution image (TIFF 3865 kb)

Supplemental Movie 1

(M1V 1693 kb)

Supplemental Movie 2

(M1V 1543 kb)

Supplemental Movie 3

(M1V 2374 kb)

Supplemental Movie 4

Test (M1V 4480 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamaki, T., Tono, K., Uchiyama, Y. et al. Origin and hierarchy of basal lamina-forming and -non-forming myogenic cells in mouse skeletal muscle in relation to adhesive capacity and Pax7 expression in vitro. Cell Tissue Res 344, 147–168 (2011). https://doi.org/10.1007/s00441-010-1127-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-1127-9

Keywords

Navigation