Skip to main content

Advertisement

Log in

Concholepas hemocyanin biosynthesis takes place in the hepatopancreas, with hemocytes being involved in its metabolism

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Hemocyanins are copper-containing glycoproteins in some molluscs and arthropods, and their best-known function is O2 transport. We studied the site of their biosynthesis in the gastropod Concholepas concholepas by using immunological and molecular genetic approaches. We performed immunohistochemical staining of various organs, including the mantle, branchia, and hepatopancreas, and detected C. concholepas hemocyanin (CCH) molecules in circulating and tissue-associated hemocytes by electron microscopy. To characterize the hemocytes, we purified them from hemolymph. We identified three types of granular cells. The most abundant type was a phagocyte-like cell with small cytoplasmic granules. The second type contained large electron-dense granules. The third type had vacuoles containing hemocyanin molecules suggesting that synthesis or catabolism occurred inside these cells. Our failure to detect cch-mRNA in hemocytes by reverse transcription with the polymerase chain reaction (RT-PCR) led us to propose that hemocytes instead played a role in CCH metabolism. This hypothesis was supported by colloidal gold staining showing hemocyanin molecules in electron-dense granules inside hemocytes. RT-PCR analysis, complemented by in situ hybridization analyses with single-stranded antisense RNAs as specific probes, demonstrated the presence of cch-mRNA in the hepatopancreas; this was consistent with the specific hybridization signal and confirmed the hepatopancreas as the site of CCH synthesis. Finally, we investigated the possibility that CCH catabolism in hemocytes was involved in the host immune response and in the generation of secondary metabolites such as antimicrobial peptides and phenoloxidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adachi K, Hirata T, Nishioka T, Sakaguchi M (2003) The prophenoloxidase-activating system in invertebrates. Immunol Rev 198:116–126

    Google Scholar 

  • Albrecht U, Keller H, Gebauer W, Markl J (2001) Rhogocytes (pore cells) as the site of hemocyanin biosynthesis in the marine gastropod Haliotis tuberculata. Cell Tissue Res 304:455–462

    Article  CAS  PubMed  Google Scholar 

  • Altenhein B, Markl J, Lieb B (2002) Gene structure and hemocyanin isoform HtH2 from the mollusc Haliotis tuberculata indicate early and late intron hot spots. Gene 301:53–60

    Article  CAS  PubMed  Google Scholar 

  • Avissar I, Daniel V, Daniel E (1981) In vitro synthesis of hemocyanin. Comp Biochem Physiol B Comp Biochem 70:815–818

    Article  Google Scholar 

  • Becker MI, Fuentes A, Del Campo M, Manubens A, Nova E, Oliva H, Faunes F, Valenzuela MA, Campos-Vallette M, Aliaga A, Ferreira J, De Ioannes AE, De Ioannes P, Moltedo B (2009) Immunodominant role of CCHA subunit of Concholepas hemocyanin is associated with unique biochemical properties. Int Immunopharmacol 9:330–339

    Article  CAS  PubMed  Google Scholar 

  • Bergmann S, Lieb B, Ruth P, Markl J (2006) The hemocyanin from a living fossil, the cephalopod Nautilus pompilius: protein structure, gene organization, and evolution. J Mol Evol 62:362–374

    Article  CAS  PubMed  Google Scholar 

  • Bergmann S, Markl J, Lieb B (2007) The first complete cDNA sequence of the hemocyanin from a bivalve, the protobranch Nucula nucleus. J Mol Evol 64:500–510

    Article  CAS  PubMed  Google Scholar 

  • Beuerlein K, Ruth P, Westermann B, Lohr S, Schipp R (2002a) Hemocyanin and the branchial heart complex of Sepia officinalis: are the hemocytes involved in hemocyanin metabolism of coleoid cephalopods? Cell Tissue Res 310:373–381

    Article  PubMed  Google Scholar 

  • Beuerlein K, Lohr S, Westermann B, Ruth P, Schipp R (2002b) Components of the cellular defense and detoxification system of the common cuttlefish Sepia officinalis (Mollusca, Cephalopoda). Tissue Cell 34:390–396

    Article  PubMed  Google Scholar 

  • Beuerlein K, Ruth P, Scholz FR, Springer J, Lieb B, Gebauer W, Westermann B, Schmidtberg H, Boletzky S von, Markl J, Schipp R (2004) Blood cells and the biosynthesis of hemocyanin in Sepia embryos. Micron 35:115–116

    Article  CAS  PubMed  Google Scholar 

  • Burmester T (2002) Origin and evolution of arthropod hemocyanins and related proteins. J Comp Physiol [B] 172:95–107

    CAS  Google Scholar 

  • Bustamante P, Cosson RP, Gallien I, Caurant F, Miramand P (2002) Cadmium detoxification processes in the digestive gland of cephalopods in relation to accumulated cadmium concentrations. Mar Environ Res 53:227–241

    Article  CAS  PubMed  Google Scholar 

  • Cerenius L, Söderhäll K (2004) The prophenoloxidase-activating system in invertebrates. Immunol Rev 198:116–226

    Article  CAS  PubMed  Google Scholar 

  • Chiarella P, Edelmann B, Fazio VM, Sawyer AM, Marco A de (2010) Antigenic features of protein carriers commonly used in immunisation trials. Biotechnol Lett 32:1215–1221

    Article  CAS  PubMed  Google Scholar 

  • Dallinger R, Chabicovsky M, Hodl E, Prem C, Hunziker P, Manzl C (2005) Copper in Helix pomatia (Gastropoda) is regulated by one single cell type: differently responsive metal pools in rhogocytes. Am J Physiol Regul Integr Comp Physiol 289:R1185–R1195

    CAS  PubMed  Google Scholar 

  • Decker H, Tuczek F (2000) Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism. Trends Biochem Sci 25:392–397

    Article  CAS  PubMed  Google Scholar 

  • De Ioannes P, Moltedo B, Oliva H, Pacheco R, Faunes F, De Ioannes AE, Becker MI (2004) Hemocyanin of the molluscan Concholepas concholepas exhibits an unusual heterodecameric array of subunits. J Biol Chem 279:26134–26142

    Article  PubMed  Google Scholar 

  • Destoumieux D, Munoz M, Bulet P, Bachere E (2000) Penaeidins, a family of antimicrobial peptides from penaeid shrimp (Crustacea, Decapoda). Cell Mol Life Sci 57:1260–1271

    Article  CAS  PubMed  Google Scholar 

  • Destoumieux-Garzon D, Saulnier D, Garbier J, Jouffrey C, Bulet P, Bachere E (2001) Crustacean immunity. Antifungal peptides are generated from the C terminus of shrimp hemocyanin in response to microbial challenge. J Biol Chem 276:47070–47077

    Article  CAS  PubMed  Google Scholar 

  • Dolashka-Angelova P, Stevanovic S, Dolashki A, Devreese B, Tzvetkova B, Voelter W, Van Beeumen J, Salvato B (2007) A challenging insight on the structural unit 1 of molluscan Rapana venosa hemocyanin. Arch Biochem Biophys 459:50–58

    Article  CAS  PubMed  Google Scholar 

  • Dolaska-Angelova P, Lieb B, Velkova L, Heilen N, Sandra K, Nikolaeva-Glomb L, Dolaski A, Galabov AS, Van Beeumen J, Stevanovic S, Voelter W, Devreese B (2009) Identification of glycosylated sites in Rapana hemocyanin by mass spectrometry and gene sequence, and their antiviral effect. Bioconjug Chem 20:1315–1322

    Article  Google Scholar 

  • Figueroa J, Martin RS, Flores C, Grothusen H, Kausel G (2005) Seasonal modulation of growth hormone mRNA and protein levels in carp pituitary: evidence for two expressed genes. J Comp Physiol [B] 175:185–192

    CAS  Google Scholar 

  • Garcia-Carreno FL, Cota K, Navarrete Del Toro MA (2008) Phenoloxidase activity of hemocyanin in whiteleg shrimp Penaeus vannamei: conversion, characterization of catalytic properties, and role in postmortem melanosis. J Agric Food Chem 56:6454–6459

    Article  CAS  PubMed  Google Scholar 

  • Gatsogiannis C, Markl J (2009) Keyhole limpet hemocyanin: 9-Å CryoEM structure and molecular model of the KLH1 didecamer reveal the interfaces and intricate topology of the 160 functional units. J Mol Biol 385:963–983

    Article  CAS  PubMed  Google Scholar 

  • Gebauer W, Stoeva S, Voelter W, Dainese E, Salvato B, Beltramini M, Markl J (1999) Hemocyanin subunit organization of the gastropod Rapana thomasiana. Arch Biochem Biophys 372:128–134

    Article  CAS  PubMed  Google Scholar 

  • Giard W, Lebel JM, Boucaud-Camou E, Favrel P (1998) Effects of vertebrate growth factors on digestive gland cells from the mollusc Pecten maximus L.: an in vitro study. J Comp Physiol [B] 168:81–86

    CAS  Google Scholar 

  • Gupta AS (1977) Calcium storage and distribution in the digestive gland of Bensonia monticola (Gastropoda: Pulmonata): a histophysiological study. Biol Bull 153:369–376

    Article  Google Scholar 

  • Harris JR, Markl J (1999) Keyhole limpet hemocyanin (KLH): a biomedical review. Micron 30:597–623

    Article  CAS  PubMed  Google Scholar 

  • Hartmann H, Bongers A, Decker H (2004) Small-angle X-ray scattering-based three-dimensional reconstruction of the immunogen KLH1 reveals different oxygen-dependent conformations. J Biol Chem 279:2841–2845

    Article  CAS  PubMed  Google Scholar 

  • Huaquín G, Garrido J (2000) Morphology and discussion of the possible role of the osphradium in Concholepas concholepas (Bruguiére 1789) (Neogastropoda: Muricidae). J Med Appl Malacol 10:145–155

    Google Scholar 

  • Idakieva K, Nikolov P, Chakarska I, Genov N, Shnyrov VL (2008) Spectroscopic properties and conformational stability of Concholepas concholepas hemocyanin. J Fluoresc 18:715–725

    Article  CAS  PubMed  Google Scholar 

  • Idakieva K, Siddiqui NI, Meersman F, De Maeyer M, Chakarska I, Gielens C (2009) Influence of limited proteolysis, detergent treatment and lyophilization on the phenoloxidase activity of Rapana thomasiana hemocyanin. Int J Biol Macromol 45:181–187

    Article  CAS  PubMed  Google Scholar 

  • Iwanaga S, Lee BL (2005) Recent advances in the innate immunity of invertebrate animals. J Biochem Mol Biol 38:128–150

    CAS  PubMed  Google Scholar 

  • Jaenicke E, Büchler K, Markl J, Decker H, Barends TR (2010) Cupredoxin-like domains in haemocyanins. Biochem J 426:373–378

    Article  CAS  PubMed  Google Scholar 

  • Johnson PT (1987) A review of fixed phagocytic and pinocytotic cells of decapod crustaceans, with remarks on hemocytes. Dev Comp Immunol 11:679–704

    Article  CAS  PubMed  Google Scholar 

  • Keller H, Lieb B, Altenhein B, Gebauer D, Richter S, Stricker S, Markl J (1999) Abalone (Haliotis tuberculata) hemocyanin type 1 (HtH1). Organization of the approximately 400 kDa subunit, and amino acid sequence of its functional units f, g and h. Eur J Biochem 264:27–38

    Article  CAS  PubMed  Google Scholar 

  • Lamm DL, Dehaven JI, Riggs DR (2000) Keyhole limpet hemocyanin immunotherapy of bladder cancer: laboratory and clinical studies. Eur Urol 37(Suppl 3):41–44

    Article  CAS  PubMed  Google Scholar 

  • Lang WH, van Holde KE (1991) Cloning and sequencing of Octopus dofleini hemocyanin cDNA: derived sequences of functional units Ode and Odf. Proc Natl Acad Sci USA 88:244–248

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Lee BL, Soderhall K (2003) Processing of an antibacterial peptide from hemocyanin of the freshwater crayfish Pacifastacus leniusculus. J Biol Chem 278:7927–7933

    Article  CAS  PubMed  Google Scholar 

  • Lehnert SA, Johnson SE (2002) Expression of hemocyanin and digestive enzyme messenger RNAs in the hepatopancreas of the black tiger shrimp Penaeus monodon. Comp Biochem Physiol B Biochem Mol Biol 133:163–171

    Article  PubMed  Google Scholar 

  • Lieb B, Altenhein B, Markl J, Vincent A, van Olden E, van Holde KE, Miller KI (2001) Structures of two molluscan hemocyanin genes: significance for gene evolution. Proc Natl Acad Sci USA 98:4546–4551

    Article  CAS  PubMed  Google Scholar 

  • Lieb B, Boisguerin V, Gebauer W, Markl J (2004) cDNA sequence, protein structure, and evolution of the single hemocyanin from Aplysia californica, an opisthobranch gastropod. J Mol Evol 59:536–545

    Article  CAS  PubMed  Google Scholar 

  • Luft JH (1961) Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol 9:409–414

    Article  CAS  PubMed  Google Scholar 

  • Markl J, Lieb B, Gebauer W, Altenhein B, Meissner U, Harris JR (2001) Marine tumor vaccine carriers: structure of the molluscan hemocyanins KLH and HtH. J Cancer Res Clin Oncol 127(Suppl 2):R3–R9

    Article  CAS  PubMed  Google Scholar 

  • Meissner U, Dube P, Harris JR, Stark H, Markl J (2000) Structure of a molluscan hemocyanin didecamer (HtH1 from Haliotis tuberculata) at 12 Å resolution by cryoelectron microscopy. J Mol Biol 298:21–34

    Article  CAS  PubMed  Google Scholar 

  • Miller KI, Cuff ME, Lang WF, Varga-Weisz P, Field KG, van Holde KE (1998) Sequence of the Octopus dofleini hemocyanin subunit: structural and evolutionary implications. J Mol Biol 278:827–842

    Article  CAS  PubMed  Google Scholar 

  • Moltedo B, Faunes F, Haussmann D, De Ioannes P, De Ioannes AE, Puente J, Becker MI (2006) Immunotherapeutic effect of Concholepas hemocyanin in the murine bladder cancer model: evidence for conserved antitumor properties among hemocyanins. J Urol 176:2690–2695

    Article  CAS  PubMed  Google Scholar 

  • Musselli C, Livingston PO, Ragupathi G (2001) Keyhole limpet hemocyanin conjugate vaccines against cancer: the Memorial Sloan Kettering experience. J Cancer Res Clin Oncol 127(Suppl 2):R20–R26

    Article  CAS  PubMed  Google Scholar 

  • Nagai T, Kawabata S (2001) Functional conversion of hemocyanin to phenoloxidase by horseshoe crab antimicrobial peptides. J Biol Chem 276:27166–27170

    Article  CAS  PubMed  Google Scholar 

  • Oakes FR, McTee S, McMullen J, Culver CS, Morse DE (2004) The effect of captivity and diet on KLH isoform ratios in Megathura crenulata. Comp Biochem Physiol A Mol Integr Physiol 138:169–173

    Article  PubMed  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  CAS  PubMed  Google Scholar 

  • Ruth P, Schipp R, Klüssendorf B (1988) Cytomorphology and copper content of the basal cells in the midgut gland of Nautilus (Cephalopoda, Tetrabranchiata). A contribution to the localization of hemocyanin synthesis. Zoomorphology 108:1–11

    Article  Google Scholar 

  • Ruth P, Blum W, Bille J (1996) Immunocytochemical reaction of a haemocyanin antibody in the midgut gland of Nautilus (Cephalopoda, Tetrabranchiata). Experientia 52:549–553

    Article  CAS  PubMed  Google Scholar 

  • Ruth P, Beuerlein K, Schipp R (2000) The pericardial appendages of Nautilus pompilius L. (Mollusca, Cephalopoda)—a site of hemocyanin metabolism? Zoology 103(Suppl 60):1

    Google Scholar 

  • Siddiqui NI, Idakieva K, Demarsin B, Doumanova L, Compernolle F, Gielens C (2007) Involvement of glycan chains in the antigenicity of Rapana thomasiana hemocyanin. Biochem Biophys Res Commun 361:705–711

    Article  CAS  PubMed  Google Scholar 

  • Sminia T, Boer HH (1973) Haemocyanin production in pore cells of the freshwater snail Lymnaea stagnalis. Z Zellforsch Mikrosk Anat 145:443–445

    Article  CAS  PubMed  Google Scholar 

  • Sminia T, Vlugh-van Dallen JE (1977) Haemocyanin synthesis in pore cells of the terrestrial snail Helix aspersa. Cell Tissue Res 183:299–301

    Article  CAS  PubMed  Google Scholar 

  • Sternberger LA, Hardy PH Jr, Cuculis JJ, Meyer HG (1970) The unlabeled antibody enzyme method of immunohistochemistry: preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem 18:315–333

    CAS  PubMed  Google Scholar 

  • Stoeva S, Idakieva K, Betzel C, Genov N, Voelter W (2002) Amino acid sequence and glycosylation of functional unit RtH2-e from Rapana thomasiana (gastropod) hemocyanin. Arch Biochem Biophys 399:149–158

    Article  CAS  PubMed  Google Scholar 

  • Streit K, Jackson D, Degnan BM, Lieb B (2005) Developmental expression of two Haliotis asinina hemocyanin isoforms. Differentiation 73:341–349

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow RD, Ebert RF, Lee P, Bonaventura C, Miller KI (1996) Keyhole limpet hemocyanin: structural and functional characterization of two different subunits and multimers. Comp Biochem Physiol B Biochem Mol Biol 113:537–548

    Article  CAS  PubMed  Google Scholar 

  • Taylor HH, Anstiss JM (1999) Copper and haemocyanin dynamics in aquatic invertebrates. Mar Freshwater Res 50:907–931

    Article  CAS  Google Scholar 

  • Tchorbanov A, Idakieva K, Mihaylova N, Doumanova L (2008) Modulation of the immune response using Rapana thomasiana hemocyanin. Int Immunopharmacol 8:1033–1038

    Article  CAS  PubMed  Google Scholar 

  • van de Braak CBT, Botterblom MHA, Taverne N, van der Knaap WPW, Rombout JHWM (2002) The role of the haematopoietic tissue in haemocyte production and maturation in the black tiger shrimp (Penaeus monodon). Fish Shellfish Immunol 12:253–272

    Article  PubMed  Google Scholar 

  • van Holde KE, Miller KI (1995) Hemocyanins. Adv Protein Chem 47:1–81

    Article  PubMed  Google Scholar 

  • van Holde KE, Miller KI, Decker H (2001) Hemocyanins and invertebrate evolution. J Biol Chem 276:15563–15566

    Article  PubMed  Google Scholar 

  • Van Weel PB (1974) Hepatopancreas? Comp Biochem Physiol 47:1–9

    Article  Google Scholar 

  • Wong QW, Mak WY, Chu KH (2008) Differential gene expression in hepatopancreas of the shrimp Metapenaeus ensis during ovarian maturation. Mar Biotechnol (NY) 10:91–98

    Article  CAS  Google Scholar 

  • Zhang X, Huang C, Qin Q (2004) Antiviral properties of hemocyanin isolated from shrimp Penaeus monodon. Antivir Res 61:93–99

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZF, Shao M, Kang KH (2006) Classification of haematopoietic cells and haemocytes in Chinese prawn Fenneropenaeus chinensis. Fish Shellfish Immunol 21:159–169

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Alejandra Fuentes, Andrea González, and Daniel Laporte for their assistance with some of the experiments and for valuable discussions and are also indebted to Dr. Esteban Nova and PhD student Sergio Arancibia for useful discussions during the course of this work. The authors are particularly grateful to Alejandro Munizaga (Servicio de Microscopía Electrónica, Pontificia Universidad Católica de Chile) for his outstanding technical assistance and to Gabriel De Ioannes for preparing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Inés Becker.

Additional information

This study was supported in part by Fundación COPEC-PUC SC0014, QC057 and FONDECYT no. 105-0150 grants.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manubens, A., Salazar, F., Haussmann, D. et al. Concholepas hemocyanin biosynthesis takes place in the hepatopancreas, with hemocytes being involved in its metabolism. Cell Tissue Res 342, 423–435 (2010). https://doi.org/10.1007/s00441-010-1057-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-1057-6

Keywords

Navigation